切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (11) : 1881 -1885. doi: 10.3877/cma.j.issn.1674-0785.2017.11.004

所属专题: 文献

基础论著

可降解镁支架对移植静脉吻合口再狭窄内膜增生及内皮化的影响
李宇罡1, 杨栋1, 王磊1, 吕俊远1, 于丹1, 辛世杰1,()   
  1. 1. 110001 沈阳,中国医科大学附属第一医院血管外科
  • 收稿日期:2017-02-27 出版日期:2017-06-01
  • 通信作者: 辛世杰
  • 基金资助:
    国家自然科学基金(81170295、81000136); 辽宁省科学技术计划项目(2013225086)

Effect of Biodegradable magnesium alloy stents in neointima proliferation and re-endothelialization of vein graft anastomotic restenosis

Yugang Li1, Dong Yang1, Lei Wang1, Junyuan Lyu1, Dan Yu1, Shijie Xin1,()   

  1. 1. Department of Vascular & Thyroid surgery, The First Affiliated Hospital, China Medical University, Shenyang 110001, China
  • Received:2017-02-27 Published:2017-06-01
  • Corresponding author: Shijie Xin
  • About author:
    Corresponding author: Xin Shijie, Email:
引用本文:

李宇罡, 杨栋, 王磊, 吕俊远, 于丹, 辛世杰. 可降解镁支架对移植静脉吻合口再狭窄内膜增生及内皮化的影响[J]. 中华临床医师杂志(电子版), 2017, 11(11): 1881-1885.

Yugang Li, Dong Yang, Lei Wang, Junyuan Lyu, Dan Yu, Shijie Xin. Effect of Biodegradable magnesium alloy stents in neointima proliferation and re-endothelialization of vein graft anastomotic restenosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(11): 1881-1885.

目的

评价可降解镁支架(BMAS)与316L不锈钢支架对移植静脉吻合口再狭窄的治疗效果,并探索其对内膜增生及内皮化的影响。

方法

27只雄性新西兰白兔随机分为可降解镁支架组(BMAS组)、316L不锈钢支架组(316L组)、对照组(NC组),每组9只。3组实验动物均行颈静脉-腹主动脉移植术,术后1个月,BMAS组与316L组经颈动脉入路于静脉桥处分别置入BMAS与316L不锈钢支架,NC组无支架置入。支架置入1、2、3、4个月后观察吻合口管腔直径变化,评价吻合口再狭窄情况;4个月时获取3组移植静脉标本,行EVG染色评价管腔形态及新生内膜面积;Evans blue染色,分光光度仪中测量620 nm波长的OD值,评价血管再内皮化情况。

结果

两种支架均可有效支撑吻合口,改善吻合口管腔直径丢失,BMAS力学支撑效果可媲美不锈钢支架,且4个月时BMAS导致的血管新生内膜面积与对照组类似[(4.80±0.58)mm2vs.(4.17±0.56)mm2P=0.112],明显少于不锈钢支架[(6.97±0.78)mm2P<0.001];Evans Blue染色结果显示,4个月时316L组OD值明显高于其他2组[316L vs. NC:(0.19±0.03)vs.(0.09±0.01),P=0.001;316L vs. BMAS:(0.19±0.03)vs.(0.08±0.01),P=0.001],而BMAS组与对照组无差别[(0.08±0.01)vs.(0.09±0.01),P=0.940]。

结论

BMAS可以有效支撑狭窄的移植静脉吻合口,力学支撑效果不弱于316L不锈钢支架,同时在减少新生内膜增殖及促进内皮化方面明显优于316L不锈钢支架,可作为未来防治移植静脉再狭窄的潜在性方法。

Objective

To evaluate the effect of biodegradable magnesium alloy stent and stainless steel 316L stent in vein graft anastomotic restenosis, and the influence on vascular remodeling.

Methods

27 male New Zealand white rabbits were divided into 3 groups (n=9 in each group), anesthetized by 3% sodium pentobarbital. External jugular vein was anastomosis to infra-renal abdominal aorta with 9-0 suture. 1 month after operation, two type of stents were randomly implanted in the stenosis anastomosis of vein graft. Biodegradable magnesium alloy stent (BMAS) were implanted in BMAS group. 316L stainless steel stent were implanted in 316L group, while control group (NC) did not receive stent implanting. DSA was carried out through ear vein at months 1, 2, 3 and 4 after stent implantation to measure the infra-renal abdominal aorta and vein graft anastomosis diameter. Paraffin section of the vein graft were performed Elastin and Van Gieson stain to evaluate vascular morphology and neointimal area. Evans blue staining was performed and detected OD value at a wavelength of 620 nm to evaluate the process of vascular re-endothelialization.

Results

Both stents can effectively support the anastomotic, and reduce loss of lumen diameter, the mechanical support effect of biodegradable magnesium alloy stent is not inferior to that of stainless steel stent. The neointimal area induced by biodegradable magnesium stent was similar to that of control group at 4th month [(4.80±0.58) mm2, vs. (4.17±0.56) mm2, P=0.112], which was significantly smaller than the control group [(4.80±0.58) mm2, vs. (6.97±0.78) mm2, P<0.001]. The OD value of 316L group was obviously higher than the other two groups [316L vs. NC: (0.19±0.03) vs. (0.09±0.01), P=0.001; 316L vs. BMAS: (0.19±0.03) vs. (0.08±0.01), P=0.001] at 4th month, while BMAS group and control group showed no significant difference [(0.08±0.01) vs. (0.09±0.01), P=0.940].

Conclusion

BMAS can effectively support the narrow vein graft anastomosis after implantation, which is similar to 316L stainless steel stent in mechanical support. However, BMAS was superior to 316L stent in reducing neointimal area and promoting re-endothelialization, which can be used as a potential method to prevent the restenosis of vein grafts.

表1 支架置入后各组吻合口管腔直径丢失情况(mm,±s
图1~3 4个月时移植静脉吻合口EVG染色观察(×100),图1为NC组;图2为316L组;图3为BMAS组
[1]
Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease [J]. N Engl J Med, 2009, 360(10): 961-972.
[2]
Mohr FW, Morice MC, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial [J]. Lancet, 2013, 381(9867): 629-638.
[3]
Habib RH, Dimitrova KR, Badour SA, et al. CABG Versus PCI: Greater Benefit in Long-Term Outcomes With Multiple Arterial Bypass Grafting[J]. J Am Coll Cardiol, 2015, 66(13): 1417-1427.
[4]
Harskamp RE, Lopes RD, Baisden CE, et al. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions [J]. Ann Surg, 2013, 257(5): 824-833.
[5]
Brennan JM, Sketch MH Jr, Dai D, et al. Safety and clinical effectiveness of drug-eluting stents for saphenous vein graft intervention in older individuals: Results from the medicare-linked National Cardiovascular Data Registry® CathPCI Registry® (2005-2009) [J]. Catheter Cardiovasc Interv, 2016, 87(1): 43-49.
[6]
Pokala NR, Menon RV, Patel SM, et al. Long-term outcomes with first- vs. second-generation drug-eluting stents in saphenous vein graft lesions [J]. Catheter Cardiovasc Interv, 2016, 87(1): 34-40.
[7]
Kedhi E, Joesoef KS, McFadden E, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice(COMPARE): A randomised trial [J]. Lancet, 2010, 375(9710): 201-209.
[8]
Stone GW, Rizvi A, Newman W, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease [J]. New Engl J Med, 2010, 362(18): 1663-1674.
[9]
Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? [J]. Heart, 2003, 89(6): 651-656.
[10]
Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold(DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial [J]. Lancet, 2013, 381(9869): 836-844.
[11]
Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions(BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial [J]. Lancet, 2016, 387(10013): 31-39.
[12]
Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American college of cardiology foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions [J]. J Am Coll Cardiol, 2011, 58(24): e44-e122.
[13]
Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: A case for standardized definitions [J]. Circulation, 2007, 115(17): 2344-2351.
[14]
Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries [J]. Catheter Cardiovasc Interv. 2006, 68(4): 607-617.
[15]
Ghimire G, Spiro J, Kharbanda R, et al. Initial evidence for the return of coronary vasoreactivity following the absorption of bioabsorbable magnesium alloy coronary stents [J]. Eurointervention, 2009, 4(4): 481-484.
[16]
Tanimoto S, Bruining N, van Domburg RT, et al. Late stent recoil of the bioabsorbable everolimus-eluting coronary stent and its relationship with plaque morphology [J]. J Am Coll Cardiol, 2008, 52(20): 1616-1620.
[17]
Maeng M, Jensen LO, Falk E, et al. Negative vascular remodeling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents [J]. Heart, 2009, 95(3): 241-246.
[18]
Mehran R, Dangas G, Abizaid AS, et al. Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome [J]. Circulation, 1999, 100(18): 1872-1878.
[19]
Curcio A, Torella D, Indolfi C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy [J]. Circ J, 2011, 75(6): 1287-1296.
[20]
Sternberg K, Gratz M, Koeck K, et al. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro [J]. J Biomed Mater Res B Appl Biomater, 2012, 100(1): 41-50.
[21]
Ma J, Zhao N, Zhu D. Biphasic responses of human vascular smooth muscle cells to magnesium ion [J]. J Biomed Mater Res A, 2016, 104(2): 347-356.
[22]
Li H, Zhong H, Xu K, et al. Enhanced efficacy of sirolimus-eluting bioabsorbable magnesium alloy stents in the prevention of restenosis [J]. J Endovasc Ther, 2011, 18(3): 407-415.
[23]
Maier JA, Bernardini D, Rayssiguier Y, et al. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro [J]. Biochim Biophys Acta, 2004, 1689(1): 6-12.
[24]
Banai S, Haggroth L, Epstein SE, et al. Influence of extracellular magnesium on capillary endothelial cell proliferation and migration [J]. Circ Res, 1990, 67(3): 645-650.
[25]
Zhao N, Zhu D. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials [J]. Metallomics, 2015, 7(1): 118-128.
[1] 张怡璇, 王亚红, 王莹, 李建初. 肾动脉多普勒超声对经皮血管内支架成形术及支架置入术后肾动脉再狭窄的诊断价值:系统综述和Meta分析[J]. 中华医学超声杂志(电子版), 2020, 17(01): 39-45.
[2] 王力力, 华扬, 贾凌云, 刘玉梅, 周瑛华, 李秋萍, 唐煜. 锁骨下动脉支架置入术后再狭窄的发生率及其影响因素分析[J]. 中华医学超声杂志(电子版), 2019, 16(10): 762-767.
[3] 李景植, 华扬, 刘然, 田晓洁, 焦力群, 贾凌云. 椎动脉支架置入术后再狭窄的发生率及血流动力学评价[J]. 中华医学超声杂志(电子版), 2019, 16(10): 756-761.
[4] 孙艺玮, 陈炜, 秦巍, 杜景辰, 孟昕, 周永军. 血管腔内介入治疗糖尿病足合并下肢动脉硬化闭塞症患者术后再狭窄与血清炎症因子的相关性[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 34-40.
[5] 李付琦, 白冲. 金属支架治疗气管支气管结核研究进展[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 548-550.
[6] 杨金朔, 吴桥伟, 王春雷, 史怀璋. 脑血管内支架成形术后再狭窄的研究进展[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 174-179.
[7] 赵峰, 邓默. 纤维蛋白原水平、踝肱指数与外周血管支架治疗下肢动脉硬化闭塞症后再狭窄的关系[J]. 中华临床医师杂志(电子版), 2024, 18(02): 144-151.
[8] 陈新军, 郑若龙, 徐卓文, 杨增芯, 李伟章, 钱惠东, 蒋文龙, 张华. 药物球囊治疗冠状动脉支架内再狭窄的临床疗效[J]. 中华临床医师杂志(电子版), 2019, 13(09): 647-652.
[9] 赖和泰, 刘羽, 程光森, 刘永康, 李忠亮, 陆骊工. 39例Surpass Streamline治疗未破裂动脉瘤患者诊疗分析:单中心临床经验[J]. 中华介入放射学电子杂志, 2023, 11(01): 19-24.
[10] 徐放, 王峰, 刘永晟. 脑动脉闭塞腔内介入治疗的研究进展和应用[J]. 中华介入放射学电子杂志, 2020, 08(04): 370-377.
[11] 郭辉, 刘佳妮, 张永裕, 张慧涛, 贺嘉男, 甘海润, 赵逆, 庞鹏飞. 经皮腔内支架植入术治疗中心静脉狭窄29例分析[J]. 中华介入放射学电子杂志, 2020, 08(02): 108-113.
[12] 孔令华, 贺迎坤, 李天晓, 张一林, 何艳艳, 朱世杰, 关绍康. 镁基合金生物可降解支架的国内外研究进展[J]. 中华介入放射学电子杂志, 2020, 08(01): 83-88.
[13] 陈猛, 孟润祺, 曹勇, 张金国. 冠状动脉支架内再狭窄的影像诊断与治疗研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 12-16.
[14] 赵铭哲, 莫斌峰, 孙健, 张澎湃, 李威, 张睿, 陈牧, 池润民, 王群山, 李毅刚. 心脏增强CT评估左心耳封堵术后装置内皮化的研究[J]. 中华心脏与心律电子杂志, 2022, 10(01): 18-22.
[15] 佟志勇, 刘源, 潘起晨, 邹存义, 程德殊, 赵旭东, 张劲松, 金友贺, 娄喆. 颈动脉内膜切除补片成形术治疗支架内再狭窄的长期疗效分析[J]. 中华脑血管病杂志(电子版), 2022, 16(06): 398-407.
阅读次数
全文


摘要