[1] |
Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease [J]. N Engl J Med, 2009, 360(10): 961-972.
|
[2] |
Mohr FW, Morice MC, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial [J]. Lancet, 2013, 381(9867): 629-638.
|
[3] |
Habib RH, Dimitrova KR, Badour SA, et al. CABG Versus PCI: Greater Benefit in Long-Term Outcomes With Multiple Arterial Bypass Grafting[J]. J Am Coll Cardiol, 2015, 66(13): 1417-1427.
|
[4] |
Harskamp RE, Lopes RD, Baisden CE, et al. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions [J]. Ann Surg, 2013, 257(5): 824-833.
|
[5] |
Brennan JM, Sketch MH Jr, Dai D, et al. Safety and clinical effectiveness of drug-eluting stents for saphenous vein graft intervention in older individuals: Results from the medicare-linked National Cardiovascular Data Registry® CathPCI Registry® (2005-2009) [J]. Catheter Cardiovasc Interv, 2016, 87(1): 43-49.
|
[6] |
Pokala NR, Menon RV, Patel SM, et al. Long-term outcomes with first- vs. second-generation drug-eluting stents in saphenous vein graft lesions [J]. Catheter Cardiovasc Interv, 2016, 87(1): 34-40.
|
[7] |
Kedhi E, Joesoef KS, McFadden E, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice(COMPARE): A randomised trial [J]. Lancet, 2010, 375(9710): 201-209.
|
[8] |
Stone GW, Rizvi A, Newman W, et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease [J]. New Engl J Med, 2010, 362(18): 1663-1674.
|
[9] |
Heublein B, Rohde R, Kaese V, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? [J]. Heart, 2003, 89(6): 651-656.
|
[10] |
Haude M, Erbel R, Erne P, et al. Safety and performance of the drug-eluting absorbable metal scaffold(DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial [J]. Lancet, 2013, 381(9869): 836-844.
|
[11] |
Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions(BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial [J]. Lancet, 2016, 387(10013): 31-39.
|
[12] |
Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American college of cardiology foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions [J]. J Am Coll Cardiol, 2011, 58(24): e44-e122.
|
[13] |
Cutlip DE, Windecker S, Mehran R, et al. Clinical end points in coronary stent trials: A case for standardized definitions [J]. Circulation, 2007, 115(17): 2344-2351.
|
[14] |
Waksman R, Pakala R, Kuchulakanti PK, et al. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries [J]. Catheter Cardiovasc Interv. 2006, 68(4): 607-617.
|
[15] |
Ghimire G, Spiro J, Kharbanda R, et al. Initial evidence for the return of coronary vasoreactivity following the absorption of bioabsorbable magnesium alloy coronary stents [J]. Eurointervention, 2009, 4(4): 481-484.
|
[16] |
Tanimoto S, Bruining N, van Domburg RT, et al. Late stent recoil of the bioabsorbable everolimus-eluting coronary stent and its relationship with plaque morphology [J]. J Am Coll Cardiol, 2008, 52(20): 1616-1620.
|
[17] |
Maeng M, Jensen LO, Falk E, et al. Negative vascular remodeling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents [J]. Heart, 2009, 95(3): 241-246.
|
[18] |
Mehran R, Dangas G, Abizaid AS, et al. Angiographic patterns of in-stent restenosis: classification and implications for long-term outcome [J]. Circulation, 1999, 100(18): 1872-1878.
|
[19] |
Curcio A, Torella D, Indolfi C. Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy [J]. Circ J, 2011, 75(6): 1287-1296.
|
[20] |
Sternberg K, Gratz M, Koeck K, et al. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro [J]. J Biomed Mater Res B Appl Biomater, 2012, 100(1): 41-50.
|
[21] |
Ma J, Zhao N, Zhu D. Biphasic responses of human vascular smooth muscle cells to magnesium ion [J]. J Biomed Mater Res A, 2016, 104(2): 347-356.
|
[22] |
Li H, Zhong H, Xu K, et al. Enhanced efficacy of sirolimus-eluting bioabsorbable magnesium alloy stents in the prevention of restenosis [J]. J Endovasc Ther, 2011, 18(3): 407-415.
|
[23] |
Maier JA, Bernardini D, Rayssiguier Y, et al. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro [J]. Biochim Biophys Acta, 2004, 1689(1): 6-12.
|
[24] |
Banai S, Haggroth L, Epstein SE, et al. Influence of extracellular magnesium on capillary endothelial cell proliferation and migration [J]. Circ Res, 1990, 67(3): 645-650.
|
[25] |
Zhao N, Zhu D. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials [J]. Metallomics, 2015, 7(1): 118-128.
|