切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (02) : 103 -106. doi: 10.3877/cma.j.issn.1674-0785.2018.02.009

所属专题: 文献

综述

心肌梗死后心肌纤维化的研究进展
姚德山1, 张振刚1, 龚开政1,()   
  1. 1. 225001 扬州大学附属医院心血管内科
  • 收稿日期:2017-08-26 出版日期:2018-01-15
  • 通信作者: 龚开政
  • 基金资助:
    国家自然科学基金(81270197,81470381,81770262); 江苏省重点研发计划社会发展项目资助(BE2015663)

Progress in research of myocardial fibrosis after myocardial infarction

Deshan Yao1, Zhengang Zhang1, Kaizheng Gong1,()   

  1. 1. Department of Cardiology, the Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
  • Received:2017-08-26 Published:2018-01-15
  • Corresponding author: Kaizheng Gong
  • About author:
    Corresponding author: Gong Kaizheng, Email:
引用本文:

姚德山, 张振刚, 龚开政. 心肌梗死后心肌纤维化的研究进展[J/OL]. 中华临床医师杂志(电子版), 2018, 12(02): 103-106.

Deshan Yao, Zhengang Zhang, Kaizheng Gong. Progress in research of myocardial fibrosis after myocardial infarction[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(02): 103-106.

心肌纤维化是心肌梗死后主要的病理过程,特征是细胞外基质合成和降解失衡,而成纤维细胞和肌纤维母细胞在此过程中起重要作用。心肌梗死后,梗死区域替代性纤维化可以减少梗死区域进一步的扩张,维持心室结构完整性,防止心室壁破裂;而非梗死区域的反应性纤维化,则会改变心室顺应性,增加心室壁的硬度,影响心脏的收缩和舒张功能。因此,心肌梗死后理想的治疗是抑制非梗死区域反应性纤维化、诱导梗死区域心肌再生,从而改善心功能。

Myocardial fibrosis is the main pathological process during the post-myocardial infarction phase (post-MI), which is characterized by the imbalance between extracellular matrix (ECM) synthesis and degradation, in which fibroblasts and myofibroblasts play an important role. Replacement fibrosis can reduce the further expansion of the infarction area, maintain ventricular integrity, and prevent ventricular wall rupture after MI. However, reactive fibrosis in the infarct border zone and in the remote uninjured myocardium leads to altered chamber compliance and increased ventricular stiffness, thereby compromising cardiac output. Therefore, an ideal therapy for MI-induced cardiac injury would combine the inhibition of reactive fibrosis (and other remodeling processes) in non-infarct areas with the induction of the regeneration of the infarcted myocardium to improve heart function.

1
Laflamme MA, Murry CE. Regenerating the Heart [J]. Nat Biotechnol, 2005, 23(23): 845-856.
2
Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling [J]. Nat Rev Cardiol, 2014, 11(5): 255-265.
3
Francis Stuart SD, De Jesus NM, Lindsey ML, et al. The crossroads of inflammation, fibrosis, and arrhythmia followingmyocardial infarction [J]. J Mol Cell Cardiol, 2015, 91: 114-122.
4
李龙, 杨水祥. 心衰与心律失常的关联和发展 [J]. 中国心血管病研究, 2016, 14(2): 105-108.
5
Ripplinger CM, Lou Q, Li W, et al. Panoramic imaging reveals basic mechanisms of induction and termination of ventricular tachycardia in rabbit heart with chronic infarction: Implications for low-voltage cardioversion [J]. Heart Rhythm, 2009, 6(1): 87-97.
6
Kohl P, Gourdie RG. Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue? [J]. J Mol Cell Cardiol, 2014, 70(100): 37-46.
7
Istrătoaie O, Pirici I, Ofiţeru AM, et al. Evaluation of cardiac microvasculature in patients with diffuse myocardial fibrosis [J]. Rom J Morphol Embryol, 2016, 57(4): 1351-1356.
8
Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis [J]. Cell Mol Life Sci, 2014, 71(4): 549-574.
9
Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-β signaling in cardiac remodeling [J]. J Mol Cell Cardiol, 2011, 51(4): 600-606.
10
Desmoulière A, Geinoz A, Gabbiani F, et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts [J]. J Cell Biol, 1993, 122(1): 103-111.
11
Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity [J]. J Mol Cell Cardiol, 2015, 91: 52-60.
12
Bujak M, Ren G, Kweon HJ, et al. Essential Role of Smad3 in Infarct Healing and in the Pathogenesis of Cardiac Remodeling [J].Circulation, 2007, 116 (19): 2127-2138.
13
Weber KT, Sun Y, Bhattacharya SK, et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart [J]. Nat Rev Cardiol, 2013, 10(1): 15-26.
14
Rodríguez-Pascual F, Busnadiego O, González-Santamaría J. The profibrotic role of endothelin-1: Is the door still open for the treatment of fibrotic diseases? [J]. Life Sci, 2014, 118(2): 156-164.
15
Leask A. Getting to the heart of the matter: new insights into cardiac fibrosis [J]. Cir Res, 2015, 116(7): 1269-1276.
16
Mueller EE, Momen A, Massé S, et al. Electrical remodelling precedes heart failure in an endothelin-1-induced model of cardiomyopathy [J]. Cardiovasc Res, 2011, 89(3): 623-633.
17
Kohan DE, Cleland JG, Rubin LJ, et al. Clinical trials with endothelin receptor antagonists: what went wrong and where can we improve? [J]. Life Sci, 2012, 91(13-14): 528-539.
18
Muraoka N, Ieda M. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis [J]. Annu Rev Physiol, 2014, 76(76): 21-37.
19
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine [J]. Circ J, 2015, 79(2): 245-254.
20
Srivastava D, Yu P. Recent advances in direct cardiac reprogramming [J]. Curr Opin Genet Dev, 2015, 34: 77-81.
21
Sahara M, Santoro F, Chien KR. Programming and reprogramming a human heart cell [J]. EMBO J, 2015, 34(6): 710-738.
22
张成, 章少中, 张亚洲, 等. 诱导心脏肌成纤维细胞向心肌样细胞转分化的miRNA [J]. 中国组织工程研究, 2013, 17(45): 7924-7931.
23
Efe JA, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy [J]. Nat Cell Biol, 2011, 13(3): 215-222.
24
Talkhabi M, Pahlavan S, Aghdami N, et al. Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes [J]. Biochem Biophys Res Commun, 2015, 463(4): 699-705.
25
Jayawardena T, Mirotsou M, Dzau VJ. Direct reprogramming of cardiac fibroblasts to cardiomyocytes using microRNAs [J]. Methods Mol Biol, 2014, 1150(1150): 263-272.
26
Zhao Y, Londono P, Cao Y, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling [J]. Nat Commun, 2014, 6: 8243-8258.
27
Palazzolo G, Quattrocelli M, Toelen J, et al. Cardiac niche influences the direct reprogramming of canine fibroblasts into cardiomyocyte-like cells [J]. Stem Cell Int, 2016, 2016: 4969430.
28
Furtado MB, Costa MW, Pranoto EA, et al. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair [J]. Circ Res, 2014, 114(9): 1422-1434.
29
Nam YJ, Lubczyk C, Bhakta M, et al. Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors [J]. Development, 2014, 141(22): 4267-4278.
30
Gherghiceanu M, Barad L, Novak A, et al. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: Comparative ultrastructure [J]. J Cell Mol Med, 2011, 15(11): 2539-2551.
31
Ma H. In vivo cardiac reprogramming using an optimal single polycistronic construct [J]. Cardiovasc Res, 2015, 108(2): 217-229.
32
Rysä J, Tenhunen O, Serpi R, et al. GATA-4 is an angiogenic survival factor of the infarcted heart [J]. Circ Heart Fail, 2010, 3(3): 440-450.
33
Lalit PA, Salick MR, Nelson DO, et al. Lineage reprogramming of fibroblasts to proliferative induced cardiac progenitor cells by defined factors [J]. Cell Stem Cell, 2016, 18(3): 354-367.
34
Zhang Y, Cao N, Huang Y, et al. Expandable cardiovascular progenitor cells reprogrammed from fibroblasts [J]. Cell Stem Cell, 2016, 18(3): 368-381.
35
Pratico ED, Feger BJ, Watson MJ, et al. RNA-mediated reprogramming of primary adult human dermal fibroblasts into c-kit(+) cardiac progenitor cells [J]. Stem Cells Dev, 2015, 24(22): 2622-2633.
36
Gong K, Chen YF, Li P, et al. Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fibrosis and remodeling in mice [J]. J Hypertens, 2011, 29(9): 1810-1819.
37
Cunnington RH, Wang B, Ghavami S, et al. Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility [J]. Am J Physiol, 2010, 300(1): C176-186.
38
Wang Y, Aitoufella H, Herbin O, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin Ⅱ-infused mice [J]. J Clin Invest, 2010, 120(2): 422-432.
39
Arslan F, Smeets MB, Riem Vis PW, et al. Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction [J]. Circ Res, 2011, 108(5): 582-592.
40
Gonzalez-Santamaria J, Villalba M, Busnadiego O, et al. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction [J]. Cardiovasc Res, 2016, 109(1): 67-78.
41
Schuetze KB, Mckinsey TA, Long CS. Targeting cardiac fibroblasts to treat fibrosis of the heart: focus on HDACs [J]. J Mol Cell Cardiol, 2014, 70(9): 100-107.
42
Lee CY, Burnett JC Jr. Natriuretic peptides and therapeutic applications [J]. Heart Fail Rev, 2007, 12(2): 131-142.
43
李世强, 傅向华, 刘君, 等. 静脉注射重组人脑利钠肽对急性心肌梗死伴心力衰竭患者的急性血流动力学效应的研究 [J]. 中华心血管病杂志, 2006, 34(1): 23-27.
44
Moilanen AM, Rysä J, Serpi R, et al. (Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function [J]. PLoS One, 2012, 7(7): e41404.
45
Corinaldesi C, Luigi LD, Lenzi A, et al. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications [J]. J Endocrinol Invest, 2016, 39(2): 143-151.
46
Wang K, Zhao X, Kuang C, et al. Overexpression of SDF-1alpha enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway [J]. PLoS one, 2012, 7(9): e43922.
47
Chen Z, Zeng C, Wang WE. Progress of stem cell transplantation for treating myocardial infarction [J]. Curr Stem Cell Res Ther, 2017, 12(8): 624-636.
[1] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[5] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[6] 王华, 曹素娥, 吴建杰, 狄金明. 膀胱炎性肌纤维母细胞瘤四例诊治报告并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 547-552.
[7] 程茂波, 刘钰莎, 张旭, 刘文博, 赵鹏. 对再生型疝修补补片动物试验设计的考量[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 121-124.
[8] 仲卫冬, 仲洁, 代京, 程文悦, 张剑. 基底膜生物补片用于腹腔内修补大鼠腹壁缺损手术引导组织再生的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 139-145.
[9] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[10] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[11] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
[12] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[13] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[14] 刘兆全, 张芳芳, 宋洪浩, 王刚, 崔明宇. 儿童腹腔炎性肌纤维母细胞瘤的诊断学特征并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 101-106.
[15] 徐立, 阎岩. aFGF修饰自体成纤维细胞治疗食管吻合口瘘的实验研究[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 180-187.
阅读次数
全文


摘要