切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (07) : 417 -420. doi: 10.3877/cma.j.issn.1674-0785.2018.07.010

所属专题: 文献

综述

前列腺癌分子的异质性
周宇权1, 徐嘉男1, 栾阳2, 徐耀宗2, 王飞2, 丁雪飞2,()   
  1. 1. 116044 大连医科大学
    2. 225001 扬州,江苏省苏北人民医院泌尿外科
  • 收稿日期:2017-11-16 出版日期:2018-04-01
  • 通信作者: 丁雪飞
  • 基金资助:
    江苏省卫生计生委科研项目(H201550)

Molecular heterogeneity of prostate cancer

Yuquan Zhou1, Jianan Xu1, Yang Luan2, Yaozong Xu2, Fei Wang2, Xuefei Ding2,()   

  1. 1. Dalian Medical University, Dalian 116044, China
    2. Department of Urology, Northern Jiangsu People's Hospital, Yangzhou 225001, China
  • Received:2017-11-16 Published:2018-04-01
  • Corresponding author: Xuefei Ding
  • About author:
    Corresponding author: Ding Xuefei, Email:
引用本文:

周宇权, 徐嘉男, 栾阳, 徐耀宗, 王飞, 丁雪飞. 前列腺癌分子的异质性[J]. 中华临床医师杂志(电子版), 2018, 12(07): 417-420.

Yuquan Zhou, Jianan Xu, Yang Luan, Yaozong Xu, Fei Wang, Xuefei Ding. Molecular heterogeneity of prostate cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(07): 417-420.

前列腺癌在病理学、临床生物学及分子谱水平上表现出高度异质性。一些男性患有惰性前列腺癌,可以安全观察,而其他患者却罹患具有致命侵袭性的前列腺癌。在过去十年中,研究人员已开始揭示导致这些不同临床表型的基因组异质性,发现了不同的分子亚型,具有将前列腺癌从不了解且高度可变的异质性疾病转变为分子亚型集合的潜能。并且这些亚型的独特性已被用于预测临床结果,设计用于前列腺癌诊断的新型生物标志物,并开发新的治疗剂。本文就部分前列腺癌的分子亚型进行阐述,为将来研究前列腺癌的治疗方法提供线索。

Prostate cancer presents a high degree of heterogeneity in pathology, clinical biology and molecular spectrum. Some men suffer from indolent prostate cancer that can be followed safely, while others have aggressive, lethal prostate cancer. In the past decade, researchers have begun to unravel the genomic heterogeneity that contributes to these different clinical phenotypes. The emergence of different molecular subtypes has the potential to translate this disease from an unknown and highly variable heterogeneous disease into a collection of molecular subtypes. The uniqueness of these subclasses has been used to predict clinical outcomes, to design novel biomarkers for the diagnosis of prostate cancer and to develop new therapeutic agents. In this paper, we review some of the molecular subtypes of prostate cancer, with an aim to provide clues to future development of strategies for treating prostate cancer.

1
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016 [J]. CA Cancer J Clin, 2016, 66(1):7-30.
2
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2):115-132.
3
Humphrey PA. Gleason grading and prognostic factors in carcinoma of the prostate [J]. Mod Pathol, 2004, 17(3):292-306.
4
Tosoian JJ, Trock BJ, Landis P, et al. Active surveillance program for prostate cancer: an update of the Johns Hopkins experience [J]. J Clin Oncol, 2011, 29(16):2185-2190.
5
Robinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer [J]. Cell, 2015, 162(2):454.
6
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer [J]. Nat Rev Cancer, 2015, 15(12):701-711.
7
丁奕星,齐隽. TMPRSS2-ETS融合基因在前列腺癌中的研究进展及临床应用前景 [J]. 上海交通大学学报(医学版), 2011, 31(6):852-857.
8
Perner S, Demichelis F, Beroukhim R, et al. TMPRSS2: ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer [J]. Cancer Res, 2006, 66(17):8337-8341.
9
Tomlins SA, Bjartell A, Chinnaiyan AM, et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice [J]. Eur Urol, 2009, 56(2):275-286.
10
Pettersson A, Graff RE, Bauer SR, et al. The TMPRSS2: ERG rearrangement, ERG expression, and prostate cancer outcomes: a cohort study and meta-analysis [J]. Cancer Epidemiol Biomarkers Prev, 2012, 21(9):1497-509.
11
Giannico GA, Arnold SA, Gellert LL, et al. New and emerging diagnostic and prognostic immunohistochemical biomarkers in prostate pathology [J]. Adv Anat Pathol, 2017, 24(1):35-44.
12
Tomlins SA, Laxman B, Dhanasekaran SM, et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer [J]. Nature, 2007, 448(7153):595-599.
13
Lin DW, Newcomb LF, Brown EC, et al. Urinary TMPRSS2: ERG and PCA3 in an active surveillance cohort: results from a baseline analysis in the Canary Prostate Active Surveillance Study [J]. Clin Cancer Res, 2013, 19(9):2442-2450.
14
Paju A, Hotakainen K, Cao Y, et al. Increased expression of tumor-associated trypsin inhibitor, TATI, in prostate cancer and in androgen-independent 22Rv1 cells [J]. Eur Urol, 2007, 52(6):1670-1679.
15
Tomlins SA, Rhodes DR, Yu J, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers [J]. Cancer Cell, 2008, 13(6):519-528.
16
滕梁红,高巍,卢德宏, 等. ERG和SPINK1蛋白在前列腺癌中表达的相互排斥性及其与预后的相关性 [J]. 中华病理学杂志, 2014, 43(3):149-153.
17
Leinonen KA, Tolonen TT, Bracken H, et al. Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer [J]. Clin Cancer Res, 2010, 16(10):2845-2851.
18
Zhang X, Yin X, Shen P, et al. The association between SPINK1 and clinical outcomes in patients with prostate cancer: a systematic review and meta-analysis [J]. Onco Targets Ther, 2017, 10:3123-3130.
19
郭鹏. Molecular Cell: SPOP通过促进ERG蛋白泛素化和降解抑制前列腺癌进展 [J]. 现代泌尿外科杂志, 2015, 20(10):749.
20
Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer [J]. Cell, 2015, 163(4):1011-1025.
21
Kwon JE, La M, Oh KH, et al. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase [J]. J Biol Chem, 2006, 281(18):12664-12672.
22
Zhang Q, Shi Q, Chen Y, et al. Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase [J]. Proc Natl Acad Sci U S A, 2009, 106(50):21191-21196.
23
Wu F, Dai X, Gan W, et al. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation [J]. Cancer Lett, 2017, 385:207-214.
24
Geng C, He B, Xu L, et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover [J]. Proc Natl Acad Sci U S A, 2013, 110(17):6997-7002.
25
An J, Wang C, Deng Y, et al. Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants [J]. Cell Rep, 2014, 6(4):657-669.
26
An J, Ren S, Murphy SJ, et al. Truncated ERG Oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation [J]. Mol Cell, 2015, 59(6):904-916.
27
Blattner M, Lee DJ, O′reilly C, et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts [J]. Neoplasia, 2014, 16(1):14-20.
28
Liu W, Lindberg J, Sui G, et al. Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer [J]. Oncogene, 2012, 31(35):3939-3948.
29
Huang S, Gulzar ZG, Salari K, et al. Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness [J]. Oncogene, 2012, 31(37):4164-4170.
30
Garcia-Flores M, Casanova-Salas I, Rubio-Briones J, et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer [J]. Eur J Cancer, 2014, 50(17):2994-3002.
31
Vinceneux A, Bruyere F, Haillot O, et al. Ductal adenocarcinoma of the prostate: clinical and biological profiles [J]. Prostate, 2017, 77(12):1242-1250.
32
Mulholland DJ, Kobayashi N, Ruscetti M, et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells [J]. Cancer Res, 2012, 72(7):1878-1889.
33
Jin G, Kim MJ, Jeon HS, et al. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers [J]. Lung Cancer, 2010, 69(3):279-283.
34
Barnett CM, Heinrich MC, Lim J, et al. Genetic profiling to determine risk of relapse-free survival in high-risk localized prostate cancer [J]. Clin Cancer Res, 2014, 20(5):1306-1312.
35
Ronen A, Glickman BW. Human DNA repair genes [J]. Environ Mol Mutagen, 2001, 37(3):241-283.
36
Amin Al Olama A, Kote-Jarai Z, Schumacher FR, et al. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease [J]. Hum Mol Genet, 2013, 22(2):408-415.
37
Helfand BT, Roehl KA, Cooper PR, et al. Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases [J]. Hum Genet, 2015, 134(4):439-450.
38
Ciccarese C, Massari F, Iacovelli R, et al. Prostate cancer heterogeneity: discovering novel molecular targets for therapy [J]. Cancer Treat Rev, 2017, 54:68-73.
[1] 方晔, 谢晓红, 罗辉. 品管圈在提高前列腺癌穿刺检出率中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 722-727.
[2] 曹建辉, 徐栋, 冯斌, 郑俊彪, 黄伟伟. 超声造影在不同前列腺特异抗原含量前列腺癌穿刺活检中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 307-312.
[3] 娄丽丽, 刘瀚旻. 儿童哮喘易感基因及表观遗传学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 249-255.
[4] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[5] 梅津熠, 王燕, 瞿旻, 董振阳, 周增辉, 沈显琦, 李嘉伦, 高旭. 机器人前列腺癌根治术中"膀胱外中叶"的处理[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 429-433.
[6] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[7] 王邦郁, 陈晓鹏, 唐国军, 王佳妮. 尿液细胞外囊泡circRNA分类器对高级别前列腺癌诊断价值的初步研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 339-342.
[8] 李全喜, 唐辉军, 唐友杰, 杨飞. DISCO成像技术在前列腺增生与前列腺癌鉴别诊断中的应用价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 332-335.
[9] 穆靖军, 马增妮, 曹晓明. 临床局限性前列腺癌包膜外侵犯的危险因素分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 326-331.
[10] 南方护骨联盟前列腺癌骨转移专家组. 前列腺癌骨转移诊疗专家共识(2023版)[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 201-208.
[11] 倪鑫淼, 王磊, 王潇, 陈志远, 翁小东, 刘修恒. 前列腺癌患者骨保护现状及临床用药进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 191-195.
[12] 刘容, 翁铭芳, 郭春雨, 邱仁慧, 方潇, 贺立民, 邓震. 机器人辅助与普通腹腔镜前列腺癌根治术对老年患者尿控功能的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 169-172.
[13] 魏勇, 沈露明, 朱辰, 成向明, 魏云飞, 袁琳, 苏健, 朱清毅. 单一术者机器人辅助单孔腹腔镜前列腺癌根治术学习曲线分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 30-35.
[14] 秦国强, 卢旭, 张朝枫, 罗欣, 李杰贤, 邹戈, 江福能. 超声造影经直肠前列腺靶向穿刺活检术在PSA 4~10 ng/ml患者中的作用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 36-38.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要