1 |
Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, et al. Pathogenesis of bone disease in multiple myeloma: from bench to bedside [J]. Blood Cancer J, 2018, 8(1):7.
|
2 |
夏祖耀,杨惠娟,陈宝安. 多发性骨髓瘤骨病治疗研究进展[J]. 中国实验血液学杂志, 2016, 24(1):275-278.
|
3 |
Mundy GR, Raisz LG, Cooper RA, et al. Evidence for the secretion of an osteoclast stimulating factor in myeloma[J]. N Engl J Med, 1974, 291(20):1041-1046.
|
4 |
Hameed A, Brady JJ, Dowling P, et al. Bone disease in multiple myeloma: pathophysiology and management [J]. Cancer Growth Metastasis,2014, 7:33-42.
|
5 |
鲍立,黄晓军. 多发性骨髓瘤骨病患者骨代谢及调节因子水平及其意义[J]. 中华内科杂志, 2011, 50(3):243-247.
|
6 |
Seidel C, Hjertner Ø, Abildgaard N, et al. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease [J]. Blood, 2001, 98(7):2269-2271.
|
7 |
Jakob C,Goerke A,Terpos E, et al. Serum levels of total-RANKL in multiple myeloma [J]. Clin Lymphoma Myeloma, 2009, 9(6):430-435.
|
8 |
张娟,马艳萍. 多发性骨髓瘤骨病发病机制及靶向治疗的研究进展[J/CD]. 中华临床医师杂志(电子版), 2017, 11(6):1024-1028.
|
9 |
褚彬,陆敏秋,吴梦青, 等. 多发性骨髓瘤骨病临床特点及监测骨代谢标志物的临床意义[J]. 中华医学杂志, 2016, 96(18):1424-1429.
|
10 |
Fu J, Li S, Feng R, et al. Multiple myeloma-derived MMP-13 mediates osteoclast fusogenesis and osteolytic disease [J]. J Clin Invest, 2016, 126(5):1759-1772.
|
11 |
Baker J, Falconer AMD, Wilkinson DJ, et al. Protein kinase D3 modulates MMP1 and MMP13 expression in human chondrocytes [J]. PLoS One, 2018, 13(4):e0195864.
|
12 |
Salem AR, Korde N, Venzon DJ. Expression of the IL-6 receptor alpha-chain (CD126) in normal and abnormal plasma cells in monoclonal gammopathy of undetermined significance and smoldering myeloma [J]. Leuk Lymphoma, 2018, 59(1):178-186.
|
13 |
Piddock RE, Marlein CR, Abdul-Aziz A, et al. Myeloma-derived macrophage inhibitory factor regulates bone marrow stromal cell-derived IL-6 via c-MYC [J]. J Hematol Oncol, 2018, 11(1):66.
|
14 |
Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma [J]. N Engl J Med, 2003, 349(26):2483-2494.
|
15 |
Giuliani N, Morandi F, Tagliaferri S, et al. Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment [J]. Cancer Res, 2007, 67(16):7665-7674.
|
16 |
Liu Z, Liu H, Yuan X, et al. Downregulation of Pim-2 induces cell cycle arrest in the G0/G1 phase via the p53-non-dependent p21 signaling pathway [J]. Oncol Lett, 2018, 15(4):4079-4086.
|
17 |
Hiasa M, Teramachi J, Oda A, et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma [J]. Leukemia, 2015, 29(1):207-217.
|
18 |
Taura A, Furuta K, Yamaguchi T, et al. Regulation of histamine synthesis and tryptase expression through transcription factors, growth factor independent 1 (Gfi1) and Gfi1b, in murine cultured mast cells [J]. Biol Pharm Bull, 2014, 37(1):81-86.
|
19 |
Harousseau JL, Moreau P. Autologous hematopoietic stem-cell transplantation for multiple myeloma [J]. N Engl J Med, 2009, 360(25):2645-2654.
|
20 |
Mir MA, Kapoor P, Kumar S, et al.Trends and outcomes in allogeneic hematopoietic stem cell transplant for multiplemyeloma at Mayo Clinic [J]. Clin Lymphoma Myeloma Leuk, 2015, 15(6):349-357.e2.
|
21 |
国际骨髓瘤基金会中国多发性骨髓瘤工作组外科治疗专家. 多发性骨髓瘤骨病外科治疗中国专家共识[J]. 中华骨科杂志, 2016, 36(4):193-199.
|
22 |
Matuschek C, Ochtrop TA, Lke E, et al. Effects of radiotherapy in the treatment of multiple myeloma: a retrospective analysis of a Single Institution [J]. Radiat Oncol, 2015, 10:71.
|
23 |
Raje N, Terpos E, Willenbacher W, et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma: an international, double-blind, double-dummy, randomised, controlled, phase 3 study [J]. Lancet Oncology, 2018, 19(3).
|
24 |
Raje N, Vadhan-Raj S, Willenbacher W, et al. Evaluating results from the multiple myeloma patient subset treated with denosumab or zoledronic acid in a randomized phase 3 trial [J]. Blood Cancer J, 2016, 6:e378.
|
25 |
Yee AJ, Raje NS. Denosumab for the treatment of bone disease in solid tumors and multiple myeloma [J]. Future Oncol, 2018, 14(3):195-203.
|
26 |
Fulciniti M, Tassone P, Hideshima T, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma [J]. Blood, 2009, 114(2):371-379.
|
27 |
Rojas EA, Corchete LA, San-Segundo L, et al. Amiloride, an old diuretic drug, is a potential therapeutic agent for multiple myeloma [J]. Clin Cancer Res, 2017, 23(21):6602-6615.
|
28 |
Sher T, Gertz MA. Antibody based immunotherapy for multiple myeloma: it′s about time[J]. Leuk Lymphoma, 2016, 57(2):269-275.
|
29 |
侯健,李荣. 新型蛋白酶体抑制剂在多发性骨髓瘤治疗中的应用[J]. 中国肿瘤临床, 2018, 45(11):542-547.
|
30 |
夏正婷. BAFF/APRIL与血液肿瘤性疾病[J]. 中国肿瘤生物治疗杂志, 2017, 24(5):567-570.
|
31 |
李敏燕,周凡,刘景华, 等. 多发性骨髓瘤患者血清B淋巴细胞活化因子和增殖诱导配体水平的测定及临床意义[J/CD]. 中华临床医师杂志(电子版), 2013, 7(15):6998-7001.
|
32 |
Neri P, Kumar S, Fulciniti MT, et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model [J]. Clin Cancer Res, 2007, 13(19):5903-5909.
|
33 |
Raje N, Faber E, Richardson PG, et al. Phase 1 study of tabalumab, a human anti-B-cell activating factor antibody, and bortezomib in patients with relapsed/refractory multiple myeloma [J]. Clin Cancer Res, 2016, 22(23):5688-5695.
|