切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 232 -236. doi: 10.3877/cma.j.issn.1674-0785.2019.03.016

所属专题: 文献

综述

非编码RNA在牙髓炎中的研究进展
刘凯1, 叶远舟1, 吴雨宸1, 苏俭生1,()   
  1. 1. 200000 上海,同济大学口腔医学院附属口腔医院口腔修复教研室 上海牙组织修复与再生工程技术研究中心
  • 收稿日期:2018-11-28 出版日期:2019-02-01
  • 通信作者: 苏俭生
  • 基金资助:
    国家自然科学基金面上项目(81873715); 国家自然科学基金面上项目(81572114); 上海市科学技术委员会项目(18441902100); 上海市科学技术委员会项目(17140903600)

Advances in research of non-coding RNA in pulpitis

Kai Liu1, Yuanzhou Ye1, Yuchen Wu1, Jiansheng Su1,()   

  1. 1. Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200000, China
  • Received:2018-11-28 Published:2019-02-01
  • Corresponding author: Jiansheng Su
  • About author:
    Corresponding author: Su Jiansheng, Email:
引用本文:

刘凯, 叶远舟, 吴雨宸, 苏俭生. 非编码RNA在牙髓炎中的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(03): 232-236.

Kai Liu, Yuanzhou Ye, Yuchen Wu, Jiansheng Su. Advances in research of non-coding RNA in pulpitis[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(03): 232-236.

在人类基因组中,至少70%基因会被转录成RNA,但只有不到2%的基因能够编码蛋白质,绝大多数DNA最终会转录成为非编码RNA(ncRNA)。在过去的几十年里,ncRNA一直被认为是无用基因,在生命的过程中起不到任何作用,但近年来,随着研究的深入和测序技术的不断发展,越来越多的证据表明,ncRNA在表观遗传水平、转录水平和转录后水平等层面上均起着重要的调控作用。牙髓炎是口腔临床中最常见的症状之一,目前临床中牙髓炎的治疗方法常为拔牙或根管治疗,但这些方法对牙齿的破坏性很大,所以应该探寻新的方法尽可能保护牙髓。ncRNA在对牙髓炎症状态的诊断与评估方面的优点越来越被认可。大量研究表明,ncRNA在牙髓炎的发生发展过程中起着重要的作用,而且在控制炎症和降低刺激因素对细胞损伤的反应中也发挥出关键作用。本综述旨在阐述ncRNA与牙髓炎之间的关系,并探讨其在牙髓炎治疗过程中的应用。

In the human genome, at least 70% of DNA will be transcribed into RNA, but less than 2% of DNA can encode proteins, and most of the DNA will eventually be transcribed into non-coding RNAs (ncRNAs). In the past few decades, ncRNAs were thought to be useless and play no role in the process of life. But in recent years, with the deepening of the research and the development of sequencing technology, more and more evidence shows that ncRNAs play an important regulatory role at the epigenetic, transcriptional, and post-transcriptional levels. Pulpitis is one of the most common symptoms in clinical stomatology. Currently, tooth extraction or root canal therapy is the common treatment for the pulpitis. However, these methods are very destructive to the teeth, so new methods should be explored to protect the dental pulp as much as possible. The advantages of ncRNAs in the diagnosis and evaluation of pulpitis are increasingly recognized. A large number of studies have shown that ncRNAs play an important role not only in the occurrence and development of pulpitis, but also in the control of inflammation and the reduction of the response of stimulating factors to cell damage. The purpose of this review is to elucidate the relationship between ncRNAs and pulpitis, and to explore their application in the treatment of pulpitis.

1
Pashley DH. Dynamics of the pulpo-dentin complex [J]. Crit Rev Oral Biol Med, 1996, 7(2): 104-133.
2
Sengupta K, Christensen LB, Mortensen LH, et al. Trends in socioeconomic inequalities in oral health among 15-year-old Danish adolescents during 1995-2013: a nationwide, register-based, repeated cross-sectional study [J]. Community Dent Oral Epidemiol, 2017, 45(5): 458-468.
3
Farges JC, Alliot-Licht B, Renard E, et al. Dental pulp defence and repair mechanisms in dental caries [J]. Mediators Inflamm, 2015, 2015: 230251.
4
Choi BD, Jeong SJ, Wang G, et al. Temporal induction of secretory leukocyte protease inhibitor (SLPI) in odontoblasts by lipopolysaccharide and wound infection [J]. J Endod, 2009, 35(7): 997-1002.
5
Lai WY, Kao CT, Hung CJ, et al. An evaluation of the inflammatory response of lipopolysaccharide-treated primary dental pulp cells with regard to calcium silicate-based cements [J]. Int J Oral Sci, 2014, 6(2): 94-98.
6
Murray PE, About I, Lumley PJ, et al. Human odontoblast cell numbers after dental injury [J]. J Dent, 2000, 28(4): 277-285.
7
Simon S, Smith AJ, Lumley PJ, et al. Molecular characterization of young and mature odontoblasts [J]. Bone, 2009, 45(4): 693-703.
8
Barthel CR, Rosenkranz B, Leuenberg A, et al. Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study [J]. J Endod, 2000, 26(9): 525-528.
9
Schmalz G, Smith AJ. Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies [J]. J Endod, 2014, 40(4 Suppl): S2-S5.
10
Taha NA, Abdelkhader SZ. Outcome of full pulpotomy using Biodentine in adult patients with symptoms indicative of irreversible pulpitis [J]. Int Endod J, 2018 , 51(8): 819-828.
11
Ferracane JL, Cooper PR, Smith AJ. Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration? [J]. Odontology, 2010, 98(1): 2-14.
12
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome [J]. Nature, 2012, 489(7414): 57-74.
13
Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells [J]. Nature, 2012 , 489(7414): 101-108.
14
Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics [J]. Cardiovasc Res, 2011, 90(3): 430-440.
15
Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation [J]. Epigenetics, 2014, 9(1): 3-12.
16
Xu S, Kamato D, Little PJ, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics [J]. Pharmacol Ther, Epub 2018 Nov 13.
17
Tsikou D, Yan Z, Holt DB, et al. Markmann K. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA [J]. Science, 2018, 362(6411): 233-236.
18
Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk? [J]. Front Genet, 2015, 6: 2.
19
Ricucci D, Loghin S, Siqueira JF Jr. Correlation between clinical and histologic pulp diagnoses [J]. J Endod, 2014, 40(12): 1932-1939.
20
Mente J, Petrovic J, Gehrig H, et al. A prospective clinical pilot study on the level of matrix metalloproteinase-9 in dental pulpal blood as a marker for the state of inflammation in the pulp tissue [J]. J Endod, 2016, 42(2): 190-197.
21
Rechenberg DK, Galicia JC, Peters OA. Biological markers for pulpal inflammation: a systematic review [J]. PLoS One, 2016, 11(11): e0167289.
22
Schönauen K, Le N, von Arnim U, et al. Circulating and fecal microRNAs as biomarkers for inflammatory bowel diseases [J]. Inflamm Bowel Dis, 2018, 24(7): 1547-1557.
23
Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges [J]. Nat Rev Drug Discov, 2014, 13(8): 622-638.
24
Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes [J]. Science, 2013, 341(6147): 789-792.
25
Jenuwein T, Allis CD. Translating the histone code [J]. Science, 2001, 293(5532): 1074-1080.
26
Ambros V. The functions of animal microRNAs [J]. Nature, 2004, 431(7006): 350-355.
27
Bayarsaihan D. Epigenetic mechanisms in inflammation [J]. J Dent Res, 2011, 90(1): 9-17.
28
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs [J]. Cell, 2009, 136(4): 642-655.
29
Braicu C, Cojocneanu-Petric R, Chira S, et al. Clinical and pathological implications of miRNA in bladder cancer [J]. Int J Nanomedicine, 2015, 10: 791-800.
30
Ling H, Pickard K, Ivan C, et al. The clinical and biological significance of MIR-224 expression in colorectal cancer metastasis [J]. Gut, 2016, 65(6): 977-989.
31
Pop-Bica C, Gulei D, Cojocneanu-Petric R, et al. Understanding the role of non-coding RNAs in bladder cancer: From Dark Matter to Valuable Therapeutic Targets [J]. Int J Mol Sci, 2017, 18(7). pii: E1514.
32
O′Connell RM, Taganov KD, Boldin MP, et al. MicroRNA-155 is induced during the macrophage inflammatory response [J]. Proc Natl Acad Sci U S A, 2007, 104(5): 1604-1609.
33
Liu G, Friggeri A, Yang Y, et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses [J]. Proc Natl Acad Sci U S A, 2009, 106(37): 15819-15824.
34
Zhong S, Zhang S, Bair E, et al. Differential expression of microRNAs in normal and inflamed human pulps [J]. J Endod, 2012, 38(6): 746-752.
35
Liu X, Zhan Z, Xu L, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα [J]. J Immunol, 2010, 185(12): 7244-7251.
36
Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis [J]. Proc Natl Acad Sci U S A, 2008, 105(35): 12885-12890.
37
Dave RS, Khalili K. Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: impact on inflammation and oxidative stress in the central nervous system [J]. J Cell Biochem, 2010, 110(4): 834-845.
38
Xue Q, Guo ZY, Li W, et al. Human activated CD4(+) T lymphocytes increase IL-2 expression by downregulating microRNA-181c [J]. Mol Immunol, 2011, 48(4): 592-599.
39
Wang B, Hsu SH, Majumder S, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3 [J]. Oncogene, 2010, 29(12): 1787-1797.
40
Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA [J]. N Engl J Med, 2013, 368(18): 1685-1694.
41
van der Ree MH, van der Meer AJ, de Bruijne J, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients [J]. Antiviral Res, 2014, 111: 53-59.
42
Irimie AI, Braicu C, Sonea L, et al. A looking-glass of non-coding RNAs in oral cancer [J]. Int J Mol Sci, 2017, 18(12). pii: E2620.
43
Irimie AI, Braicu C, Pileczki V, et al. Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells [J]. Mol Cell Biochem, 2016, 419(1-2): 75-82.
44
Jurj A, Braicu C, Pop LA, et al. The new era of nanotechnology, an alternative to change cancer treatment [J]. Drug Des Devel Ther, 2017, 11: 2871-2890.
45
Haussecker D, Kay MA. RNA interference. Drugging RNAi [J]. Science, 2015, 347(6226): 1069-1070.
46
Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects [J]. Chem Biol, 2012, 19(1): 60-71.
47
Wu H, He M, Yang R, et al. Astrocyte elevated gene-1 participates in the production of pro-inflammatory cytokines in dental pulp cells via NF-κB signalling pathway [J]. Int Endod J, 2018, 51(10): 1130-1138.
48
Huang Y, Qiao W, Wang X, et al. Role of Ku70 in the apoptosis of inflamed dental pulp stem cells [J]. Inflamm Res, 2018, 67(9): 777-788.
49
Hui T, A P, Zhao Y, et al. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors [J]. Arch Oral Biol, 2018, 85: 16-22.
50
Bei Y, Tianqian H, Fanyuan Y, et al. ASH1L suppresses matrix metalloproteinase through mitogen-activated protein kinase signaling pathway in pulpitis [J]. J Endod, 2017, 43(2): 306-314.
51
IIott NE, Heward JA, Roux B, et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes [J]. Nat commun, 2014, 5: 3979.
52
Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation [J]. Science, 2014, 344(6181): 310-313.
53
Tripathi V, Shen Z, Chakraborty A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB [J]. PLoS Genet, 2013, 9(3): e1003368.
54
Hirose T, Virnicchi G, Tanigawa A, et al. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies [J]. Mol Biol cell, 2014, 25(1): 169-183.
55
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future [J]. Genetics, 2013, 193(3): 651-669.
56
Huang X, Chen K. Differential expression of long noncoding RNAs in normal and inflamed human dental pulp [J]. J Endod, 2018, 44(1): 62-72.
57
Chen L, Song Z, Huang S, et al. LncRNA DANCR suppresses odontoblast-like differentiation of human dental pulp cells by inhibiting wnt/β-catenin pathway [J]. Cell Tissue Res, 2016, 364(2): 309-318.
58
Zeng L, Sun S, Han D, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells [J]. Cell Signal, 2018, 52: 65-73.
[1] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[2] 左雯鑫, 袁理, 杨天慧, 汤剑明, 周芷伊, 何飞. 长链非编码RNA基因芯片技术筛选口腔扁平苔藓唾液外泌体差异表达基因[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 208-218.
[3] 李泽乾, 郝少龙, 张博, 纪凯伦, 韩威. 外周血非编码RNA在胰腺癌中研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 217-220.
[4] 张博, 韩威, 郝少龙, 李泽乾, 纪智礼. 竞争内源性RNA在胰腺癌研究中的进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 213-216.
[5] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[6] 黄军杰, 王烈, 赵虎, 夏印, 张再重. lncRNA作为ceRNA参与婴幼儿血管瘤发生发展机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 360-366.
[7] 姜垠昊, 杨秭莹, 沈晗, 沈振亚. 干细胞心肌分化调控过程中的非编码RNA[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 300-308.
[8] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[9] 莫建涛, 杨沛泽, 曹瑞奇, 马清涌, 王铮, 仵正, 周灿灿. 基于生物信息学分析构建肝内胆管细胞癌患者铁死亡相关lncRNA预后模型[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 185-189.
[10] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[11] 王建鹏, 廖勇仕, 丁文聪, 李冲, 陈锐. lncRNA在创伤性脑损伤中的研究进展[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 365-370.
[12] 王健, 赵海剑, 孙静, 张晓雨, 陈柏羽. LncRNA SNHG4表达与结直肠癌预后的关系[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 139-144.
[13] 张慧锋, 张弸, 朱晓蔚, 于鸿. 外泌体长链非编码RNA在胃癌中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(01): 46-49.
[14] 高福来, 赵东强. 长链非编码RNA在胃肠道间质瘤中的研究进展[J]. 中华胃肠内镜电子杂志, 2022, 09(03): 152-155.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要