1 |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin, 2020, 70(1): 7-30.
|
2 |
Guo J, Qin S, Liang J, et al. Chinese guidelines on the diagnosis and treatment of melanoma (2015 Edition) [J]. Chin Clin Oncol, 2016, 5(4): 57.
|
3 |
Si L, Zhang X, Shu Y, et al. A phase Ib study of pembrolizumab as second-line therapy for chinese patients with advanced or metastatic melanoma (KEYNOTE-151) [J]. Transl Oncol, 2019, 12(6): 828-835.
|
4 |
Bai X, Kong Y, Chi Z, et al. MAPK pathway and TERT promoter gene mutation pattern and its prognostic value in melanoma patients: a retrospective study of 2,793 sases [J]. Clin Cancer Res, 2017, 23(20): 6120-6127.
|
5 |
Aitken A. Post-translational modification of 14-3-3 isoforms and regulation of cellular function [J]. Semin Cell Dev Biol, 2011, 22: 673-680.
|
6 |
Muslin AJ, Tanner JW, Allen PM, et al. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine [J]. Cell, 1996, 84: 889-897.
|
7 |
Neal CL, Yao J, Yang W, et al. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival [J]. Cancer Res, 2009, 69(8):3425-3432.
|
8 |
Matta A, Bahadur S, Duggal R, et al. Over-expression of 14-3-3zeta is an early event in oral cancer [J]. BMC Cancer, 2007, 7: 169.
|
9 |
Bajpai U, Sharma R, Kausar T, et al. Clinical significance of 14-3-3 zeta in human esophageal cancer [J]. Int J Biol Markers, 2008, 23(4): 231-237.
|
10 |
Yu CC, Li CF, Chen IH, et al. YWHAZ amplification/overexpression defines aggressive bladder cancer and contributes to chemo-/radio-resistance by suppressing caspase-mediated apoptosis [J]. J Pathol, 2019, 248(4): 476-487.
|
11 |
Neal CL, Yu D. 14-3-3zeta as a prognostic marker and therapeutic target for cancer [J]. Expert Opin Ther Targets, 2010, 14: 1343-1354.
|
12 |
Li Y, Zou L, Li Q, et al. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer [J]. Nat Med, 2010, 16: 214-218.
|
13 |
Choi JE, Hur W, Jung CK, et al. Silencing of 14-3-3zeta over-expression in hepatocellular carcinoma inhibits tumor growth and enhances chemosensitivity to cis-diammined dichloridoplatium [J]. Cancer Lett, 2011, 303: 99-107.
|
14 |
Zhang T, Choi J, Kovacs MA, et al. Cell-type-specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes [J]. Genome Res, 2018, 28: 1621-1635.
|
15 |
Talantov D, Mazumder A, Yu JX, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions [J]. Clin Cancer Res, 2005, 11(20): 7234-7242.
|
16 |
Zhang Y, Yang Y, Chen L, Zhang J. Expression analysis of genes and pathways associated with liver metastases of the uveal melanoma [J]. BMC Med Genet, 2014, 15: 29.
|
17 |
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, et al. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets [J]. PLoS One, 2017, 12(2):e0171512.
|
18 |
马家芳,孔燕,郭军. MITF在黑色素瘤中的研究现状及进展[J]. 肿瘤, 2013, 33(12):1130-1134.
|
19 |
Galan JA, Geraghty KM, Lavoie G, et al. Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3 [J]. Proc Natl Acad Sci U S A, 2014, 111(29): E2918-E2927.
|
20 |
Chi Z, Li S, Sheng X, et al. Clinical presentation, histology, and prognoses of malignant melanoma in ethnic Chinese: A study of 522 consecutive cases [J]. BMC Cancer, 2011, 11: 85.
|
21 |
McLaughlin CC, Wu XC, Jemal A, et al. Incidence of noncutaneous melanomas in the U.S [J]. Cancer, 2005, 103(5): 1000-1007.
|
22 |
Hayward NK, Wilmott JS, Waddell N, et al. Whole-genome landscapes of major melanoma subtypes [J]. Nature, 2017, 545(7653): 175-180.
|