切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (09) : 721 -724. doi: 10.3877/cma.j.issn.1674-0785.2020.09.011

所属专题: 文献

综述

野生型p53诱导的磷酸酶调节炎症和动脉粥样硬化研究进展
张颖怡1, 潘兵2, 王宏宇3,()   
  1. 1. 100144 北京大学首钢医院血管医学中心
    2. 100144 北京大学医学部血管健康研究中心;100191 北京大学心血管研究所
    3. 100144 北京大学首钢医院血管医学中心;100144 北京大学医学部血管健康研究中心
  • 收稿日期:2020-02-13 出版日期:2020-09-15
  • 通信作者: 王宏宇

Wild-type p53-induced phosphatase regulates immune inflammation and atherosclerosis

Yingyi Zhang1, Bing Pan2, Hongyu Wang3,()   

  1. 1. Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
    2. Vascular Health Research Center of Peking University Health Science Center, Beijing 100144, China; Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
    3. Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China; Vascular Health Research Center of Peking University Health Science Center, Beijing 100144, China
  • Received:2020-02-13 Published:2020-09-15
  • Corresponding author: Hongyu Wang
  • About author:
    Corresponding author: Wang Hongyu, Email:
引用本文:

张颖怡, 潘兵, 王宏宇. 野生型p53诱导的磷酸酶调节炎症和动脉粥样硬化研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(09): 721-724.

Yingyi Zhang, Bing Pan, Hongyu Wang. Wild-type p53-induced phosphatase regulates immune inflammation and atherosclerosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(09): 721-724.

野生型p53诱导的磷酸酶(Wip1)是一种丝氨酸/苏氨酸磷酸酶,参与多种炎症相关疾病的免疫调节。最近研究发现,Wip1参与自噬、巨噬细胞迁移,平滑肌细胞增生,揭示Wip1参与了动脉粥样硬化(AS)过程。本文就Wip1与免疫炎症及AS关系的研究进展作一综述,希望为进一步探讨AS发生机制和AS相关疾病的治疗带来新思路。

Wild-type p53-induced phosphatase (Wip1) is a serine/threonine phosphatase that participates in the pathogenesis of inflammatory diseases. Recent studies have showed that Wip1 also plays a role in autophagy, macrophage migration, and vascular smooth muscle cell proliferation, which suggests that Wip1 also promotes the atherosclerosis (AS) process. In this paper, we review the relationship of Wip1 with immune inflammation and AS, in order to bring new ideas to the further exploration of targeted therapy for AS.

1
胡盛寿,高润霖,刘力生, 等. 《中国心血管病报告2018》概要 [J]. 中国循环杂志, 2019, 34(3): 209-220.
2
Liu H, Wang H. Early detection system of vascular disease and its application prospect [J]. Biomed Res Int, 2016, 2016: 1723485.
3
Liu H, Liu J, Zhao H, et al. The design and rationale of the Beijing Vascular Disease Patients Evaluation Study (BEST study) [J]. Contemp Clin Trials Commun, 2017, 7: 18-22.
4
Schaftenaar F, Frodermann V, Kuiper J, et al. Atherosclerosis: the interplay between lipids and immune cells [J]. Curr Opin Lipidol, 2016, 27(3): 209-215.
5
Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword [J]. Nat Rev Immunol, 2006, 6(7): 508-519.
6
Shen XF, Zhao Y, Jiang JP, et al. Phosphatase Wip1 in immunity: an overview and update [J]. Front Immunol, 2017, 8: 8.
7
Tang Y, Pan B, Zhou X, et al. Wip1-dependent modulation of macrophage migration and phagocytosis [J]. Redox Biol, 2017, 13: 665-673.
8
Sun X, Li S, Gan X, et al. Wild-type p53-induced phosphatase 1 promotes vascular smooth muscle cell proliferation and neointima hyperplasia after vascular injury via p-adenosine 5’-monophosphate-activated protein kinase/mammalian target of rapamycin complex 1 pathway [J]. J Hypertens, 2019, 37(11): 2256-2268.
9
Bai F, Zhou H, Fu Z, et al. NF-kappaB-induced WIP1 expression promotes colorectal cancer cell proliferation through mTOR signaling [J]. Biomed Pharmacother, 2018, 99: 402-410.
10
Wu CE, Esfandiari A, Ho YH, et al. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma [J]. Br J Cancer, 2018, 118(4): 495-508.
11
Bulavin DV, Demidov ON, Saito S, et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity [J]. Nat Genet, 2002, 31(2): 210-215.
12
Demidov ON, Kek C, Shreeram S, et al. The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis [J]. Oncogene, 2007, 26(17): 2502-2506.
13
Wang P, Zhao Y, Liu K, et al. Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner [J]. J Cell Biochem, 2019, 120(9): 15709-15718.
14
Le Guezennec X, Brichkina A, Huang YF, et al. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis [J]. Cell metabolism, 2012, 16(1): 68-80.

URL    
15
Sakai H, Fujigaki H, Mazur SJ, et al. Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication [J]. Cell Cycle, 2014, 13(6): 1015-1029.

URL    
16
Yang YQ, Zheng YH, Zhang CT, et al. Wild-type p53-induced phosphatase 1 down-regulation promotes apoptosis by activating the DNA damage-response pathway in amyotrophic lateral sclerosis [J]. Neurobiol Dis, 2019, 134: 104648.
17
Liu G, Hu X, Sun B, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1 [J]. Blood, 2013, 121(3): 519-529.

URL    
18
Sun B, Hu X, Liu G, et al. Phosphatase Wip1 negatively regulates neutrophil migration and inflammation [J]. J Immunol, 2014, 192(3): 1184-1195.
19
Schito ML, Demidov ON, Saito S, et al. Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation [J]. J Immunol, 2006, 176(8): 4818-4825.
20
Yi W, Hu X, Chen Z, et al. Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner [J]. Blood, 2015, 126(5): 620-628.
21
Choi J, Nannenga B, Demidov ON, et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control [J]. Mol Cell Biol, 2002, 22(4): 1094-1105.
22
Grigorash BB, Uyanik B, Kochetkova EY, et al. Wip1 inhibition leads to severe pro-inflammatory phenotype in skin in response to chemical irritation [J]. J Dermatol Sci, 2017, 87(1): 85-88.
23
Zhang Q, Zhang C, Chang F, et al. Wip 1 inhibits intestinal inflammation in inflammatory bowel disease [J]. Cell Immunol, 2016, 310: 63-70.
24
Hu X, Wang P, Du J, et al. Phosphatase Wip1 masters IL-17-producing neutrophil-mediated colitis in mice [J]. Inflamm Bowel Dis, 2016, 22(6): 1316-1325.
25
Wang P, Su H, Zhang L, et al. Phosphatase wild-type p53-induced phosphatase 1 controls the development of TH9 cells and allergic airway inflammation [J]. J Allergy Clin Immunol, 2018, 141(6): 2168-2181.
26
Lowe JM, Cha H, Yang Q, et al. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase [J]. J Biol Chem, 2010, 285(8): 5249-5257.
27
Satoh N, Maniwa Y, Bermudez VP, et al. Oncogenic phosphatase Wip1 is a novel prognostic marker for lung adenocarcinoma patient survival [J]. Cancer Sci, 2011, 102(5): 1101-1106.
28
Yoda A, Toyoshima K, Watanabe Y, et al. Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase [J]. J Biol Chem, 2008, 283(27): 18969-18979.
29
Chew J, Biswas S, Shreeram S, et al. WIP1 phosphatase is a negative regulator of NF-kappaB signalling [J]. Nat Cell Biol, 2009, 11(5): 659-666.
30
Tan X, Zhang J, Jin W, et al. Wip1 phosphatase involved in lipopolysaccharide-induced neuroinflammation [J]. J Mol Neurosci, 2013, 51(3): 959-966.

URL    
31
Li D, Zhang L, Huang X, et al. WIP1 phosphatase plays a critical neuroprotective role in brain injury induced by high-altitude hypoxic inflammation [J]. Neurosci Bull, 2017, 33(3): 292-298.
32
Zhong H, Cui L, Xu F, et al. Up-regulation of Wip1 involves in neuroinflammation of retinal astrocytes after optic nerve crush via NF-kappaB signaling pathway [J]. Inflamm Res, 2016, 65(9): 709-715.
33
Zhen H, Zhao L, Ling Z, et al. Wip1 regulates blood-brain barrier function and neuro-inflammation induced by lipopolysaccharide via the sonic hedgehog signaling signaling pathway [J]. Mol Immunol, 2018, 93: 31-37.
34
Brichkina A, Bulavin DV. WIP-ing out atherosclerosis with autophagy [J]. Autophagy, 2012, 8(10): 1545-1547.

URL    
35
Sun X, Li S, Gan X, et al. Wild-type p53-induced phosphatase 1 promotes vascular smooth muscle cell proliferation and neointima hyperplasia after vascular injury via p-adenosine 5′-monophosphate-activated protein kinase/mammalian target of rapamycin complex 1 pathway [J]. J Hypertens, 2019, 37(11): 2256-2268.
36
Alexander A, Cai SL, Kim J, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS [J]. Proc Natl Acad Sci U S A, 2010, 107(9):4153-4138.
37
Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis [J]. Trends Cardiovasc Med, 2008, 18(6): 228-232.
38
Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture [J]. Circ Res, 2014, 114(12): 1852-1866.

URL    
39
Kashyap SR, Defronzo RA. The insulin resistance syndrome: physiological considerations [J]. Diab Vasc Dis Res, 2007, 4(1): 13-19.
40
Armata HL, Chamberland S, Watts L, et al. Deficiency of the tumor promoter gene wip1 induces insulin resistance [J]. Mol Endocrinol, 2015, 29(1): 28-39.
41
Shreeram S, Demidov ON, Hee WK, et al. Wip1 phosphatase modulates ATM-dependent signaling pathways [J]. Molecular Cell, 2006, 23(5): 757-764.
42
Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints [J]. Genes Dev, 2005, 19(10): 1162-1174.
43
王宏宇,刘欢. 新的血管健康分级标准与血管医学 [J]. 心血管病学进展, 2015, 36(4): 365-368.
44
王宏宇. 推广血管健康理念,促进血管医学专业发展 [J]. 中国循环杂志, 2018, 33(10): 1026-1028.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[4] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[5] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[6] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[9] 刘宏达, 邵祥忠, 李林, 许小伟. 海安地区动脉粥样硬化性脑梗死患者CYP2C19基因多态性及与氯吡格雷抵抗的关系[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 234-240.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要