1 |
胡盛寿,高润霖,刘力生, 等. 《中国心血管病报告2018》概要 [J]. 中国循环杂志, 2019, 34(3): 209-220.
|
2 |
Liu H, Wang H. Early detection system of vascular disease and its application prospect [J]. Biomed Res Int, 2016, 2016: 1723485.
|
3 |
Liu H, Liu J, Zhao H, et al. The design and rationale of the Beijing Vascular Disease Patients Evaluation Study (BEST study) [J]. Contemp Clin Trials Commun, 2017, 7: 18-22.
|
4 |
Schaftenaar F, Frodermann V, Kuiper J, et al. Atherosclerosis: the interplay between lipids and immune cells [J]. Curr Opin Lipidol, 2016, 27(3): 209-215.
|
5 |
Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword [J]. Nat Rev Immunol, 2006, 6(7): 508-519.
|
6 |
Shen XF, Zhao Y, Jiang JP, et al. Phosphatase Wip1 in immunity: an overview and update [J]. Front Immunol, 2017, 8: 8.
|
7 |
Tang Y, Pan B, Zhou X, et al. Wip1-dependent modulation of macrophage migration and phagocytosis [J]. Redox Biol, 2017, 13: 665-673.
|
8 |
Sun X, Li S, Gan X, et al. Wild-type p53-induced phosphatase 1 promotes vascular smooth muscle cell proliferation and neointima hyperplasia after vascular injury via p-adenosine 5’-monophosphate-activated protein kinase/mammalian target of rapamycin complex 1 pathway [J]. J Hypertens, 2019, 37(11): 2256-2268.
|
9 |
Bai F, Zhou H, Fu Z, et al. NF-kappaB-induced WIP1 expression promotes colorectal cancer cell proliferation through mTOR signaling [J]. Biomed Pharmacother, 2018, 99: 402-410.
|
10 |
Wu CE, Esfandiari A, Ho YH, et al. Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma [J]. Br J Cancer, 2018, 118(4): 495-508.
|
11 |
Bulavin DV, Demidov ON, Saito S, et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity [J]. Nat Genet, 2002, 31(2): 210-215.
|
12 |
Demidov ON, Kek C, Shreeram S, et al. The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis [J]. Oncogene, 2007, 26(17): 2502-2506.
|
13 |
Wang P, Zhao Y, Liu K, et al. Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner [J]. J Cell Biochem, 2019, 120(9): 15709-15718.
|
14 |
Le Guezennec X, Brichkina A, Huang YF, et al. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis [J]. Cell metabolism, 2012, 16(1): 68-80.
URL
|
15 |
Sakai H, Fujigaki H, Mazur SJ, et al. Wild-type p53-induced phosphatase 1 (Wip1) forestalls cellular premature senescence at physiological oxygen levels by regulating DNA damage response signaling during DNA replication [J]. Cell Cycle, 2014, 13(6): 1015-1029.
URL
|
16 |
Yang YQ, Zheng YH, Zhang CT, et al. Wild-type p53-induced phosphatase 1 down-regulation promotes apoptosis by activating the DNA damage-response pathway in amyotrophic lateral sclerosis [J]. Neurobiol Dis, 2019, 134: 104648.
|
17 |
Liu G, Hu X, Sun B, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1 [J]. Blood, 2013, 121(3): 519-529.
URL
|
18 |
Sun B, Hu X, Liu G, et al. Phosphatase Wip1 negatively regulates neutrophil migration and inflammation [J]. J Immunol, 2014, 192(3): 1184-1195.
|
19 |
Schito ML, Demidov ON, Saito S, et al. Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation [J]. J Immunol, 2006, 176(8): 4818-4825.
|
20 |
Yi W, Hu X, Chen Z, et al. Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner [J]. Blood, 2015, 126(5): 620-628.
|
21 |
Choi J, Nannenga B, Demidov ON, et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control [J]. Mol Cell Biol, 2002, 22(4): 1094-1105.
|
22 |
Grigorash BB, Uyanik B, Kochetkova EY, et al. Wip1 inhibition leads to severe pro-inflammatory phenotype in skin in response to chemical irritation [J]. J Dermatol Sci, 2017, 87(1): 85-88.
|
23 |
Zhang Q, Zhang C, Chang F, et al. Wip 1 inhibits intestinal inflammation in inflammatory bowel disease [J]. Cell Immunol, 2016, 310: 63-70.
|
24 |
Hu X, Wang P, Du J, et al. Phosphatase Wip1 masters IL-17-producing neutrophil-mediated colitis in mice [J]. Inflamm Bowel Dis, 2016, 22(6): 1316-1325.
|
25 |
Wang P, Su H, Zhang L, et al. Phosphatase wild-type p53-induced phosphatase 1 controls the development of TH9 cells and allergic airway inflammation [J]. J Allergy Clin Immunol, 2018, 141(6): 2168-2181.
|
26 |
Lowe JM, Cha H, Yang Q, et al. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase [J]. J Biol Chem, 2010, 285(8): 5249-5257.
|
27 |
Satoh N, Maniwa Y, Bermudez VP, et al. Oncogenic phosphatase Wip1 is a novel prognostic marker for lung adenocarcinoma patient survival [J]. Cancer Sci, 2011, 102(5): 1101-1106.
|
28 |
Yoda A, Toyoshima K, Watanabe Y, et al. Arsenic trioxide augments Chk2/p53-mediated apoptosis by inhibiting oncogenic Wip1 phosphatase [J]. J Biol Chem, 2008, 283(27): 18969-18979.
|
29 |
Chew J, Biswas S, Shreeram S, et al. WIP1 phosphatase is a negative regulator of NF-kappaB signalling [J]. Nat Cell Biol, 2009, 11(5): 659-666.
|
30 |
Tan X, Zhang J, Jin W, et al. Wip1 phosphatase involved in lipopolysaccharide-induced neuroinflammation [J]. J Mol Neurosci, 2013, 51(3): 959-966.
URL
|
31 |
Li D, Zhang L, Huang X, et al. WIP1 phosphatase plays a critical neuroprotective role in brain injury induced by high-altitude hypoxic inflammation [J]. Neurosci Bull, 2017, 33(3): 292-298.
|
32 |
Zhong H, Cui L, Xu F, et al. Up-regulation of Wip1 involves in neuroinflammation of retinal astrocytes after optic nerve crush via NF-kappaB signaling pathway [J]. Inflamm Res, 2016, 65(9): 709-715.
|
33 |
Zhen H, Zhao L, Ling Z, et al. Wip1 regulates blood-brain barrier function and neuro-inflammation induced by lipopolysaccharide via the sonic hedgehog signaling signaling pathway [J]. Mol Immunol, 2018, 93: 31-37.
|
34 |
Brichkina A, Bulavin DV. WIP-ing out atherosclerosis with autophagy [J]. Autophagy, 2012, 8(10): 1545-1547.
URL
|
35 |
Sun X, Li S, Gan X, et al. Wild-type p53-induced phosphatase 1 promotes vascular smooth muscle cell proliferation and neointima hyperplasia after vascular injury via p-adenosine 5′-monophosphate-activated protein kinase/mammalian target of rapamycin complex 1 pathway [J]. J Hypertens, 2019, 37(11): 2256-2268.
|
36 |
Alexander A, Cai SL, Kim J, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS [J]. Proc Natl Acad Sci U S A, 2010, 107(9):4153-4138.
|
37 |
Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis [J]. Trends Cardiovasc Med, 2008, 18(6): 228-232.
|
38 |
Bentzon JF, Otsuka F, Virmani R, et al. Mechanisms of plaque formation and rupture [J]. Circ Res, 2014, 114(12): 1852-1866.
URL
|
39 |
Kashyap SR, Defronzo RA. The insulin resistance syndrome: physiological considerations [J]. Diab Vasc Dis Res, 2007, 4(1): 13-19.
|
40 |
Armata HL, Chamberland S, Watts L, et al. Deficiency of the tumor promoter gene wip1 induces insulin resistance [J]. Mol Endocrinol, 2015, 29(1): 28-39.
|
41 |
Shreeram S, Demidov ON, Hee WK, et al. Wip1 phosphatase modulates ATM-dependent signaling pathways [J]. Molecular Cell, 2006, 23(5): 757-764.
|
42 |
Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints [J]. Genes Dev, 2005, 19(10): 1162-1174.
|
43 |
王宏宇,刘欢. 新的血管健康分级标准与血管医学 [J]. 心血管病学进展, 2015, 36(4): 365-368.
|
44 |
王宏宇. 推广血管健康理念,促进血管医学专业发展 [J]. 中国循环杂志, 2018, 33(10): 1026-1028.
|