1 |
Morales-Cano D, Calviño E, Rubio V, et al. Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition [J]. Exp Toxicol Pathol, 2013, 65(7-8):1101-1108.
|
2 |
Ranjeeta B, Rajender RK. Drug-induced liver injury due to cancer chemotherapeutic agents [J]. Semin Liver Dis, 2014, 34(2):162-171.
|
3 |
Capel ID, Jenner M, Dorrell HM, et al. Hepatic function assessed (in rats) during chemotherapy with some anti-cancer drugs [J]. Clin Chem, 1979, 25(8):1381-1383.
|
4 |
Khan H, Nabavi SM, Sureda A, et al. Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum[J]. Eur J Med Chem, 2018, 153:29-33.
|
5 |
Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review [J]. Clini Pharmacokinet, 2017, 57(1):7-19.
|
6 |
Jin Y, Hu W, Liu Tet al. Nogo-B receptor increases the resistance of estrogen receptor positive breast cancer to paclitaxel [J]. Cancer Lett, 2018, 419:233-244.
|
7 |
Li W, Chen Z, Shen S, et al. Protective effect of magnesium isoglycyrrhizinate combinated with verapamil on liver ischemia-reperfusion injury after semi-hepatectomy in rats [J]. Zhonghua Yi Xue Za Zhi, 2015, 95(38):3119-3123.
|
8 |
Wang W, Li X, Xu J. Magnesium isoglycyrrhizinate attenuates D-galactosamine/lipopolysaccharides induced acute liver injury of rat via regulation of the p38-MAPK and NF-κB signaling pathways [J]. Immunopharmacol Immunotoxicol, 2018, 40(3):262-267.
|
9 |
Zou X, Wang Y, Peng C, et al. Magnesium isoglycyrrhizinate has hepatoprotective effects in an oxaliplatin-induced model of liver injury [J]. Int J Mol Med, 2018, 42(4):2020-2030.
|
10 |
Wang Y, Wang Z, Gao M, et al. Efficacy and safety of magnesium isoglycyrrhizinate injection in patients with acute drug‐induced liver injury: A phase II trial [J]. Liver Int, 2019, 39(11):2102-2111.
|
11 |
Bocci G, Di Paolo A, Danesi R. The pharmacological bases of the antiangiogenic activity of paclitaxel [J]. Angiogenesis, 2013, 16(3):481-492.
|
12 |
Maha HS, Noha A, Nirmeen M, et al. Paclitaxel alleviates liver fibrosis induced by bile duct ligation in rats: Role of TGF-β1, IL-10 and c-Myc [J]. Life Sci, 2018, 211:245-251.
|
13 |
Yang Q, Zhang D, Li Y, et al. Paclitaxel alleviated liver injury of septic mice by alleviating inflammatory response via microRNA-27a/TAB3/NF-κB signaling pathway [J]. Biomed Pharmacother, 2018, 97:1424-1433.
|
14 |
Ali C, Ertan B, Belge KE, et al. N-acetylcysteine ameliorates methotrexate-induced oxidative liver damage in rats [J]. Med Sci Monit, 2006, 12(8):BR274-278.
|
15 |
Jing ZT, Liu W, Xue CR, et al. AKT activator SC79 protects hepatocytes from TNF-α-mediated apoptosis and alleviates d-Gal/LPS-induced liver injury [J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(3): G387-G396.
|
16 |
Malik G, Wilting J, Hess CF, et al. PECAM-1 modulates liver damage induced by synergistic effects of TNF-α and irradiation [J]. J Cell Mol Med, 2019, 23(5):3336-3344.
|
17 |
Afrin R, Arumugam S, Rahman A, et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation [J]. Int Immunopharmacol, 2017, 44:174-182.
|
18 |
Huang L, Zhao Z, Duan C, et al. Lactobacillus plantarum C88 protects against aflatoxin B(1)-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis [J]. BMC Microbiol, 2019, 19(1):170.
|
19 |
Sun Y, Gu J, Liu R, et al. IL-2/IL-6 ratio correlates with liver function and recovery in acute liver injury patients [J]. APMIS, 2019, 127(6):468-474.
|
20 |
Yousefi A, Zare Bidoki A, Shafioyoun A, et al. Association of IL-10 and TGF-beta cytokine gene polymorphisms with autoimmune hepatitis [J]. Clin Res Hepatol Gastroenterol, 2019, 43(1):45-50.
|