切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (11) : 922 -925. doi: 10.3877/cma.j.issn.1674-0785.2020.11.014

所属专题: 文献

基础研究

异甘草酸镁对紫杉醇致大鼠肝损伤的防治作用及其对血清IL-6、IL-10、TNF-α的影响
赖雪莹1, 刘斌2, 胡学琴3, 陈浩军1,()   
  1. 1. 511400 广州,广州市番禺区中心医院消化中心三区
    2. 510515 广州,南方医科大学南方医院药学部
    3. 511400 广州,广州市番禺区妇幼保健院儿科
  • 收稿日期:2020-08-03 出版日期:2020-11-15
  • 通信作者: 陈浩军
  • 基金资助:
    广州市卫生健康科技一般引导项目(20201A011116)

Therapeutic effect of magnesium isoglycyrrhizinate on liver injury induced by paclitaxel and its effect on serum IL-6, IL-10 and TNF-α

Xueying Lai1, Bin Liu2, Xueqin Hu3, Haojun Chen1,()   

  1. 1. The Third Department of Digestion Center, Panyu Central Hospital, Guangzhou 511400, China
    2. Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
    3. Department of Pediatrics, Guangzhou Panyu District Maternal and Child Health Hospital, Guangzhou 511400, China
  • Received:2020-08-03 Published:2020-11-15
  • Corresponding author: Haojun Chen
引用本文:

赖雪莹, 刘斌, 胡学琴, 陈浩军. 异甘草酸镁对紫杉醇致大鼠肝损伤的防治作用及其对血清IL-6、IL-10、TNF-α的影响[J]. 中华临床医师杂志(电子版), 2020, 14(11): 922-925.

Xueying Lai, Bin Liu, Xueqin Hu, Haojun Chen. Therapeutic effect of magnesium isoglycyrrhizinate on liver injury induced by paclitaxel and its effect on serum IL-6, IL-10 and TNF-α[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(11): 922-925.

目的

观察异甘草酸镁(MgIG)对紫杉醇(PTX)致大鼠急性肝损伤的防治作用及对其体内IL-6、IL-10、TNF-α水平的影响。

方法

大鼠50只,采用随机数字表法分成空白组、模型组、MgIG 低剂量组(6.25 mg/kg)、中剂量组(12.5 mg/kg)和高剂量组(25 mg/kg)。MgIG 3个剂量组腹腔注射给药,空白组和模型组给予等体积生理盐水,1次/d,连续腹腔注射给药14 d。除对照组外,其余各组于实验第5天腹腔注射PTX 8 mg/kg建立大鼠肝损伤模型。最后一次给药后24 h,处死大鼠取材,分离血清检测谷丙转氨酶(ALT)、谷草转氨酶(AST)值;ELISA 法检测白介素(IL)-6、IL-10、肿瘤坏死因子(TNF)-α的水平变化;采用HE染色观察各组大鼠肝脏组织病理学改变。

结果

与模型组比较,MgIG低、中、高剂量组大鼠血清ALT[(43.97±7.18)、(42.17±7.67)、(33.63±4.09)U/L vs (52.33±5.63)U/L]和AST[(78.06±5.07)、(75.83±6.45)、(70.40±7.12)U/L vs (86.84±8.72)U/L]水平降低(P<0.05,P<0.01,P<0.001);与模型组比较,MgIG低、中、高剂量组IL-6[(239.97±13.74)、(236.14±26.12)、(191.34±15.83)ng/L vs (261.02±10.88)ng/L]水平降低(P<0.05,P<0.01,P<0.001),MgIG中、高剂量组IL-10[(30.25±5.25)、(37.06±7.73)pg/ml vs (23.64±2.09)pg/ml]水平升高(P<0.05,P<0.001),TNF-α[(70.83±5.91)、(57.83±8.20)ng/L vs (85.27±6.54)ng/L]水平降低(P<0.01,P<0.001)。光镜下MgIG 3个剂量组的炎症程度较模型组减轻,并随着剂量增加而减轻程度增加,呈剂量药效关系。

结论

MgIG通过改变大鼠血清促炎因子的水平,并且改善大鼠肝脏病理组织损伤程度,进而对PTX所致大鼠肝损伤起保护作用。

Objective

To observe the therapeutic effects of magnesium isoglycyrrhizinate (MgIG) on acute liver injury induced by paclitaxel and its effect on the levels of IL-6, IL-10 and TNF-α in rats.

Methods

Using a random number table method, 50 rats were divided into blank group, model group, MgIG low-dose group (6.25 mg/kg), middle-dose group (12.5 mg/kg) and high-dose group (25 mg/kg). MgIG was given by intraperitoneal injection in 3 dose groups, and the blank group and model group were given equal volume of normal saline, once daily, for 14 days. Except for the control group, the other 4 groups were intraperitoneally injected with paclitaxel 8 mg/kg on the 5th day to establish a rat liver injury model. Rats were sacrificed 24 h after the last administration. Serum was collected to detect alanine aminotransferase (ALT) and aspartate aminotransferase (AST) values. ELISA mathod was used to detect interleukin-6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) level. HE staining was used to observe histopathological changes in the liver of rats in each group.

Results

The ALT levels of the low, medium and high doses group[(43.97±7.18), (42.17±7.67), (33.63±4.09) U/L] and AST levels [(78.06±5.07), (75.83±6.45), (70.40±7.12) U/L] were significantly lower than those [(52.33±5.63), (86.84±8.72) U/L] of the model group (P<0.05, P<0.01 or P<0.001). IL-6 levels in low, medium and high dose groups [(239.97±13.74), (236.14±26.12), (191.34±15.83) ng/L] and IL-10 levels in middle and high dose groups [(30.25±5.25), (37.06±7.73) pg/ml] were significantly lower/higher than those of the model group [(261.02±10.88) ng/L, (23.64±2.09) pg/ml] (P<0.05, P<0.01 or P<0.001). At the same time, levels of TNF-α [(70.83±5.91), (57.83±8.20) ng/L] in the middle and high dose groups were significantly lower than those in the model group [(85.27±6.54) ng/L] (P<0.01 or P<0.001). Under the optical microscope, the degree of inflammation in the three dose groups of MgIG was less than that of the model group, and the degree of reduction increased with the dose.

Conclusion

MgIG can protect the liver damage caused by paclitaxel by changing the level of serum inflammatory factors and improving the degree of liver pathological tissue damage in rats.

表1 各组大鼠血清肝功能指标检测结果比较(U/L,
xˉ
±s
表2 MgIG对大鼠血清中IL-6、IL-10和TNF-α含量变化的影响(
xˉ
±s
图1 各组大鼠肝脏病理学改变(HE染色,×400)a为空白组,b 为模型组,c为低剂量组,d 为中剂量组,e为高剂量组
1
Morales-Cano D, Calviño E, Rubio V, et al. Apoptosis induced by paclitaxel via Bcl-2, Bax and caspases 3 and 9 activation in NB4 human leukaemia cells is not modulated by ERK inhibition [J]. Exp Toxicol Pathol, 2013, 65(7-8):1101-1108.
2
Ranjeeta B, Rajender RK. Drug-induced liver injury due to cancer chemotherapeutic agents [J]. Semin Liver Dis, 2014, 34(2):162-171.
3
Capel ID, Jenner M, Dorrell HM, et al. Hepatic function assessed (in rats) during chemotherapy with some anti-cancer drugs [J]. Clin Chem, 1979, 25(8):1381-1383.
4
Khan H, Nabavi SM, Sureda A, et al. Therapeutic potential of songorine, a diterpenoid alkaloid of the genus Aconitum[J]. Eur J Med Chem, 2018, 153:29-33.
5
Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review [J]. Clini Pharmacokinet, 2017, 57(1):7-19.
6
Jin Y, Hu W, Liu Tet al. Nogo-B receptor increases the resistance of estrogen receptor positive breast cancer to paclitaxel [J]. Cancer Lett, 2018, 419:233-244.
7
Li W, Chen Z, Shen S, et al. Protective effect of magnesium isoglycyrrhizinate combinated with verapamil on liver ischemia-reperfusion injury after semi-hepatectomy in rats [J]. Zhonghua Yi Xue Za Zhi, 2015, 95(38):3119-3123.
8
Wang W, Li X, Xu J. Magnesium isoglycyrrhizinate attenuates D-galactosamine/lipopolysaccharides induced acute liver injury of rat via regulation of the p38-MAPK and NF-κB signaling pathways [J]. Immunopharmacol Immunotoxicol, 2018, 40(3):262-267.
9
Zou X, Wang Y, Peng C, et al. Magnesium isoglycyrrhizinate has hepatoprotective effects in an oxaliplatin-induced model of liver injury [J]. Int J Mol Med, 2018, 42(4):2020-2030.
10
Wang Y, Wang Z, Gao M, et al. Efficacy and safety of magnesium isoglycyrrhizinate injection in patients with acute drug‐induced liver injury: A phase II trial [J]. Liver Int, 2019, 39(11):2102-2111.
11
Bocci G, Di Paolo A, Danesi R. The pharmacological bases of the antiangiogenic activity of paclitaxel [J]. Angiogenesis, 2013, 16(3):481-492.
12
Maha HS, Noha A, Nirmeen M, et al. Paclitaxel alleviates liver fibrosis induced by bile duct ligation in rats: Role of TGF-β1, IL-10 and c-Myc [J]. Life Sci, 2018, 211:245-251.
13
Yang Q, Zhang D, Li Y, et al. Paclitaxel alleviated liver injury of septic mice by alleviating inflammatory response via microRNA-27a/TAB3/NF-κB signaling pathway [J]. Biomed Pharmacother, 2018, 97:1424-1433.
14
Ali C, Ertan B, Belge KE, et al. N-acetylcysteine ameliorates methotrexate-induced oxidative liver damage in rats [J]. Med Sci Monit, 2006, 12(8):BR274-278.
15
Jing ZT, Liu W, Xue CR, et al. AKT activator SC79 protects hepatocytes from TNF-α-mediated apoptosis and alleviates d-Gal/LPS-induced liver injury [J]. Am J Physiol Gastrointest Liver Physiol, 2019, 316(3): G387-G396.
16
Malik G, Wilting J, Hess CF, et al. PECAM-1 modulates liver damage induced by synergistic effects of TNF-α and irradiation [J]. J Cell Mol Med, 2019, 23(5):3336-3344.
17
Afrin R, Arumugam S, Rahman A, et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation [J]. Int Immunopharmacol, 2017, 44:174-182.
18
Huang L, Zhao Z, Duan C, et al. Lactobacillus plantarum C88 protects against aflatoxin B(1)-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis [J]. BMC Microbiol, 2019, 19(1):170.
19
Sun Y, Gu J, Liu R, et al. IL-2/IL-6 ratio correlates with liver function and recovery in acute liver injury patients [J]. APMIS, 2019, 127(6):468-474.
20
Yousefi A, Zare Bidoki A, Shafioyoun A, et al. Association of IL-10 and TGF-beta cytokine gene polymorphisms with autoimmune hepatitis [J]. Clin Res Hepatol Gastroenterol, 2019, 43(1):45-50.
[1] 李文金, 薛庆云. 白细胞介素家族炎性细胞因子在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 348-353.
[2] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[3] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[6] 魏强, 张明祥, 陈强谱, 孙宝房. 增味小承气汤对梗阻性黄疸大鼠胃肠道动力的影响[J]. 中华普通外科学文献(电子版), 2023, 17(04): 267-270.
[7] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[8] 黄彩英, 陈萍, 潘杰, 莫彩云, 尚敏红, 周俊. 紫杉醇治疗胸腺鳞癌致大疱性表皮松解坏死性药疹救治成功一例[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 442-444.
[9] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[15] 曹文玺, 陈箫, 竺来法, 周永平. 尼妥珠单抗联合白蛋白结合型紫杉醇治疗胰腺癌的有效性及安全性分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 409-413.
阅读次数
全文


摘要