切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (12) : 1017 -1022. doi: 10.3877/cma.j.issn.1674-0785.2020.12.013

所属专题: 文献

综述

外泌体源性miRNA在子痫前期发病机制中的研究进展
龚榕铨1, 曹恒山1, 马敏2,()   
  1. 1. 225009 江苏扬州,扬州大学医学院
    2. 225009 江苏扬州,扬州大学医学院;225012 江苏扬州,扬州大学附属医院产科
  • 收稿日期:2020-07-06 出版日期:2020-12-15
  • 通信作者: 马敏
  • 基金资助:
    江苏高校自然科学基金面上项目(20KJD320004); 江苏省大学生创新创业训练计划(202011117118Y); 江苏省研究生实践创新计划(XSJCX20_036); 扬州大学科技创新培育基金(2019CXJ180); 江苏省“双创计划”; 扬州市“绿扬金凤计划”

Role of exosomal microRNAs in pathogenesis of preeclampsia

Rongquan Gong1, Hengshan Cao1, Min Ma2,()   

  1. 1. Yangzhou University Medical College, Yangzhou 225009, China
    2. Yangzhou University Medical College, Yangzhou 225009, China; Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225012, China
  • Received:2020-07-06 Published:2020-12-15
  • Corresponding author: Min Ma
引用本文:

龚榕铨, 曹恒山, 马敏. 外泌体源性miRNA在子痫前期发病机制中的研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(12): 1017-1022.

Rongquan Gong, Hengshan Cao, Min Ma. Role of exosomal microRNAs in pathogenesis of preeclampsia[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(12): 1017-1022.

子痫前期作为一种妊娠期特有的高血压综合征,严重威胁母婴安全,但目前尚无准确的生物标志物作为诊断依据且其病因和发病机制尚未完全阐明。外泌体是广泛存在于体液中的细胞外囊泡,携带多种蛋白质、脂质和核酸等生物活性分子,具有多种生物学功能,其所携带的miRNA具有特异性、多元性、抗降解、能被稳定检出的特点。研究发现子痫前期患者胎盘组织分泌的外泌体中有多种差异表达的miRNA,表明其可能参与了子痫前期的发生发展,可能作为子痫前期预测的潜在靶点。本文对外泌体源性miRNA的结构、功能及其与子痫前期发病机制的研究进展进行综述,旨在为子痫前期早期预测及诊治提供新思路。

Preeclampsia, which seriously threatens the safety of both mother and infant, is a pregnancy-specific hypertension syndrome. However, there is currently no accurate diagnostic bio-markers available, and its etiology and pathogenesis have not been fully elucidated. Exosomes are extracellular vesicles widely existing in body fluids. They carry a variety of bio-active molecules such as proteins, lipids, and nucleic acids and have many biological functions. The microRNAs (miRNAs) carried by exosomes have the characteristics of specificity, diversity, resistance to degradation, and stable detection. It is found that a variety of differentially expressed miRNAs can be detected in exosomes secreted by placental tissues of patients with preeclampsia, suggesting that they may be involved in the pathogenesis of preeclampsia and become novel potential targets for detection of preeclampsia. This paper reviews the structure and function of exosome-derived miRNAs and their relationship with the pathogenesis of preeclampsia in order to provide new ideas for the pathogenesis, early prediction, diagnosis, and treatment of preeclampsia.

1
American College of Obstetricians and Gynecologists (ACOG). ACOG practice bulletin No. 202 summary: gestational hypertension and preeclampsia [J]. Obstet Gynecol, 2019, 133(1): 211-214.
2
Mol BWJ, Roberts CT, Thangaratinam S, et al. Pre-eclampsia [J]. Lancet, 2016, 387(10022): 999-1011.
3
Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention [J]. Int J Gynaecol Obstet, 2019, 145Suppl 1(Suppl 1): 1-33.
4
Cui YJ, Wang W, Dong NZ, et al. Role of corin in trophoblast invasion and uterine spiral artery remodeling in pregnancy [J]. Nature, 2012, 484(7393):246-250.
5
Steegers EA, von Dadelszen P, Duvekot JJ, et al. Pre-eclampsia [J]. Lancet, 2010, 376(9741): 631-644.
6
Hemmatzadeh M, Shomali N, Yousefzadeh Y, et al. MicroRNAs: small molecules with a large impact on pre-eclampsia [J]. J Cell Physiol, 2020, 235(4): 3235-3248.
7
Awamleh Z, Gloor GB, Han VKM. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology [J]. BMC Med Genomics, 2019, 12(1): 91.
8
Lip SV, Boekschoten MV, Hooiveld GJ, et al. Early-onset preeclampsia, plasma microRNAs, and endothelial cell function [J]. Am J Obstet Gynecol, 2020, 222(5): 497.e1-e12.
9
Salomon C, Guanzon D, Scholz-Romero K, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal MicroRNAs across gestation [J]. J Clin Endocrinol Metab, 2017, 102(9): 3182-3194.
10
Li H, Ouyang Y, Sadovsky E, et al. Unique microRNA signals in plasma exosomes from pregnancies complicated by preeclampsia [J]. Hypertension, 2020, 75(3): 762-771.
11
Pillay P, Vatish M, Duarte R, et al. Exosomal microRNA profiling in early and late onset preeclamptic pregnant women reflects pathophysiology [J]. Int J Nanomedicine, 2019, 14: 5637-5657.
12
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation association of plasma membrane activities with released vesicles (exosomes) [J]. J Biol Chem, 1987, 262(19): 9412-9420.
13
Liu H, Wang F, Zhang Y, et al. Exosomal microRNA-139-5p from mesenchymal stem cells accelerates trophoblast cell invasion and migration by motivation of the ERK/MMP-2 pathway via downregulation of protein tyrosine phosphatase [J]. J Obstet Gynaecol Res, 2020, 46(12): 2561-2572.
14
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nat Cell Biol, 2007, 9(6): 654-659.
15
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release [J]. Cell Mol Life Sci, 2018, 75(2): 193-208.
16
Pillay P, Moodley K, Moodley J, et al. Placenta-derived exosomes: potential biomarkers of preeclampsia [J]. Int J Nanomedicine, 2017, 12: 8009-8023.
17
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, bisgenesis and function [J]. Nat Rev Immuol, 2002, 2(8): 569-579.
18
Zomer A, Vendrig T, Hopmans ES, et al. Exosomes: fit to deliver small RNA [J]. Commun Integr Biol, 2010, 3(5): 447-450
19
Greening DW, Gopal SK, XU R, et al. Exosomes and their roles in immune regulation and cancer [J]. Semin Cell Dev Biol, 2015, 40: 72-81.
20
Chiarello DI, Salsoso R, Toledo F, et al. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia [J]. Mol Aspects Med, 2018, 60: 69-80.
21
Lee HM, Nguyen DT, Lu LF. Progress and challenge of microRNA research in immunity [J]. Front Genet, 2014, 5: 178.
22
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma [J]. Proc Natl Acad Sci U S A, 2011, 108(12): 5003-5008.
23
Ge Q, Zhou Y, Lu J, et al. miRNA in plasma exosome is stable under different, storage conditions [J]. Molecules, 2014, 19(2): 1568-1575.
24
Hromadnikova I, Kotlabova K, Ivankova K, et al. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR [J]. PLoS One, 2017, 12(2): e0171756.
25
Hromadnikova I, Dvorakova L, Kotlabova K, et al. The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs [J]. Int J Mol Sci, 2019, 20(12): 2972-2989.
26
Zhao XY, Li YM, Chen S, et al. Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia [J]. Biochem Biophys Res Commun, 2020, 525(3): 646-653.
27
Motawi TMK, Sabry D, Maurice NW, et al. Role of mesenchymal stem cells exosomes derived microRNAs; miR-136, miR-494 and miR-495 in pre-eclampsia diagnosis and evaluation [J]. Arch Biochem Biophys, 2018, 659: 13-21.
28
Biró O, Fóthi Á, Alasztics B, et al. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia [J]. Gene, 2019, 692: 138-144.
29
Anton L, Olarerin-George AO, Schwartz N, et al. miR-210 inhibits trophoblsat invasion and is a serum biomarker for preeclampsia [J]. Am J Pathol, 2013, 183(5): 1437-1445.
30
Wang N, Feng Y, Xu J, et al. miR-362-3p regulates cell proliferation, migration and invasion of trophoblastic cells under hypoxia through targeting Pax3 [J]. Biomed Pharmacother, 2018, 99: 462-468.
31
Bai Y, Yang W, Yang HX, et al. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression [J]. PLoS One, 2012, 7(6): e38875.
32
Xiao J, Tao T, Yin Y, et al. miR-144 may regulate the proliferation, migration and invasion of trophoblastic cells through targeting PTEN in preeclampsia [J]. Biomed Pharmacother, 2017, 94: 341-353.
33
Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia [J]. J Clin Invest, 2003, 111(5): 649-658.
34
Sandrim VC, Dias MC, Bovolato AL, et al. Plasma from pre-eclamptic patients induces the expression of the anti-angiogenic miR-195-5p in endothelial cells [J]. J Cell Mol Med, 2016, 20(6): 1198-1200.
35
Shen L, Li Y, Li R, et al. Placenta-associated serum exosomal miR-155 derived from patients with preeclampsia inhibits eNOS expression in human umbilical vein endothelial cells [J]. Int J Mol Med, 2018, 41(3): 1731-1739.
36
Bounds KR, Chiasson VL, Pan LJ, et al. MicroRNAs: new players in the pathobiology of preeclampsia [J]. Front Cardiovasc Med, 2017, 4: 60.
37
Perez-Sepulveda A, Torres MJ, Khoury M, et al. Innate immune system and preeclampsia [J]. Front Immunol, 2014, 5: 244.
38
Cornelius DC. Preeclampsia: from inflammation to immunoregulation [J]. Clin Med Insights Blood Disord, 2018, 11: 1179545X17752325.
39
Zhao M, Wang LT, Liang GP, et al. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+T cells of psoriasis vulgaris [J]. Clin Immunol, 2014, 150(1): 22-30.
40
Luo R, Shao X, Xu P, et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1 [J]. Hypertension, 2014, 64(4): 839-845.
41
Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia [J]. Am J Obstet Gynecol, 2007, 196(3): 261.e1-6.
42
Alivernini S, Gremese E, McSharry C, et al. MicroRNA-155-at the critical interface of innate and adaptive immunity in arthritis [J]. Front Immunol, 2018, 8: 1932.
43
Wang Z, Wang P, Wang Z, et al. MiRNA-548c-5p downregulates inflammatory response in preeclampsia via targeting PTPRO [J]. J Cell Physiol, 2019, 234(7): 11149-11155.
44
Ma HY, Cu W, Sun YH, et al. MiRNA-203a-3p inhibits inflammatory response in preeclampsia through regulating IL24 [J]. Eur Rev Med Pharmacol Sci, 2020, 24(10): 5223-5230.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[4] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[5] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[6] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[7] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[8] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[9] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[10] 韦先梅, 韩毓, 蒋英彩. 敲减circSERPINE2通过靶向调控miR-34a-5p表达抑制滋养层细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 193-201.
[11] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[12] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[13] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[14] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[15] 张赟辉, 罗军, 刘栗丽, 汪宏, 耿克明. 腹膜透析与血液透析对老年终末期肾病患者营养状况及炎症反应的影响[J]. 中华临床医师杂志(电子版), 2023, 17(04): 419-423.
阅读次数
全文


摘要