切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (12) : 1017 -1022. doi: 10.3877/cma.j.issn.1674-0785.2020.12.013

所属专题: 文献

综述

外泌体源性miRNA在子痫前期发病机制中的研究进展
龚榕铨1, 曹恒山1, 马敏2,()   
  1. 1. 225009 江苏扬州,扬州大学医学院
    2. 225009 江苏扬州,扬州大学医学院;225012 江苏扬州,扬州大学附属医院产科
  • 收稿日期:2020-07-06 出版日期:2020-12-15
  • 通信作者: 马敏
  • 基金资助:
    江苏高校自然科学基金面上项目(20KJD320004); 江苏省大学生创新创业训练计划(202011117118Y); 江苏省研究生实践创新计划(XSJCX20_036); 扬州大学科技创新培育基金(2019CXJ180); 江苏省“双创计划”; 扬州市“绿扬金凤计划”

Role of exosomal microRNAs in pathogenesis of preeclampsia

Rongquan Gong1, Hengshan Cao1, Min Ma2,()   

  1. 1. Yangzhou University Medical College, Yangzhou 225009, China
    2. Yangzhou University Medical College, Yangzhou 225009, China; Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou 225012, China
  • Received:2020-07-06 Published:2020-12-15
  • Corresponding author: Min Ma
引用本文:

龚榕铨, 曹恒山, 马敏. 外泌体源性miRNA在子痫前期发病机制中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2020, 14(12): 1017-1022.

Rongquan Gong, Hengshan Cao, Min Ma. Role of exosomal microRNAs in pathogenesis of preeclampsia[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(12): 1017-1022.

子痫前期作为一种妊娠期特有的高血压综合征,严重威胁母婴安全,但目前尚无准确的生物标志物作为诊断依据且其病因和发病机制尚未完全阐明。外泌体是广泛存在于体液中的细胞外囊泡,携带多种蛋白质、脂质和核酸等生物活性分子,具有多种生物学功能,其所携带的miRNA具有特异性、多元性、抗降解、能被稳定检出的特点。研究发现子痫前期患者胎盘组织分泌的外泌体中有多种差异表达的miRNA,表明其可能参与了子痫前期的发生发展,可能作为子痫前期预测的潜在靶点。本文对外泌体源性miRNA的结构、功能及其与子痫前期发病机制的研究进展进行综述,旨在为子痫前期早期预测及诊治提供新思路。

Preeclampsia, which seriously threatens the safety of both mother and infant, is a pregnancy-specific hypertension syndrome. However, there is currently no accurate diagnostic bio-markers available, and its etiology and pathogenesis have not been fully elucidated. Exosomes are extracellular vesicles widely existing in body fluids. They carry a variety of bio-active molecules such as proteins, lipids, and nucleic acids and have many biological functions. The microRNAs (miRNAs) carried by exosomes have the characteristics of specificity, diversity, resistance to degradation, and stable detection. It is found that a variety of differentially expressed miRNAs can be detected in exosomes secreted by placental tissues of patients with preeclampsia, suggesting that they may be involved in the pathogenesis of preeclampsia and become novel potential targets for detection of preeclampsia. This paper reviews the structure and function of exosome-derived miRNAs and their relationship with the pathogenesis of preeclampsia in order to provide new ideas for the pathogenesis, early prediction, diagnosis, and treatment of preeclampsia.

1
American College of Obstetricians and Gynecologists (ACOG). ACOG practice bulletin No. 202 summary: gestational hypertension and preeclampsia [J]. Obstet Gynecol, 2019, 133(1): 211-214.
2
Mol BWJ, Roberts CT, Thangaratinam S, et al. Pre-eclampsia [J]. Lancet, 2016, 387(10022): 999-1011.
3
Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention [J]. Int J Gynaecol Obstet, 2019, 145Suppl 1(Suppl 1): 1-33.
4
Cui YJ, Wang W, Dong NZ, et al. Role of corin in trophoblast invasion and uterine spiral artery remodeling in pregnancy [J]. Nature, 2012, 484(7393):246-250.
5
Steegers EA, von Dadelszen P, Duvekot JJ, et al. Pre-eclampsia [J]. Lancet, 2010, 376(9741): 631-644.
6
Hemmatzadeh M, Shomali N, Yousefzadeh Y, et al. MicroRNAs: small molecules with a large impact on pre-eclampsia [J]. J Cell Physiol, 2020, 235(4): 3235-3248.
7
Awamleh Z, Gloor GB, Han VKM. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology [J]. BMC Med Genomics, 2019, 12(1): 91.
8
Lip SV, Boekschoten MV, Hooiveld GJ, et al. Early-onset preeclampsia, plasma microRNAs, and endothelial cell function [J]. Am J Obstet Gynecol, 2020, 222(5): 497.e1-e12.
9
Salomon C, Guanzon D, Scholz-Romero K, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal MicroRNAs across gestation [J]. J Clin Endocrinol Metab, 2017, 102(9): 3182-3194.
10
Li H, Ouyang Y, Sadovsky E, et al. Unique microRNA signals in plasma exosomes from pregnancies complicated by preeclampsia [J]. Hypertension, 2020, 75(3): 762-771.
11
Pillay P, Vatish M, Duarte R, et al. Exosomal microRNA profiling in early and late onset preeclamptic pregnant women reflects pathophysiology [J]. Int J Nanomedicine, 2019, 14: 5637-5657.
12
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation association of plasma membrane activities with released vesicles (exosomes) [J]. J Biol Chem, 1987, 262(19): 9412-9420.
13
Liu H, Wang F, Zhang Y, et al. Exosomal microRNA-139-5p from mesenchymal stem cells accelerates trophoblast cell invasion and migration by motivation of the ERK/MMP-2 pathway via downregulation of protein tyrosine phosphatase [J]. J Obstet Gynaecol Res, 2020, 46(12): 2561-2572.
14
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells [J]. Nat Cell Biol, 2007, 9(6): 654-659.
15
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release [J]. Cell Mol Life Sci, 2018, 75(2): 193-208.
16
Pillay P, Moodley K, Moodley J, et al. Placenta-derived exosomes: potential biomarkers of preeclampsia [J]. Int J Nanomedicine, 2017, 12: 8009-8023.
17
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, bisgenesis and function [J]. Nat Rev Immuol, 2002, 2(8): 569-579.
18
Zomer A, Vendrig T, Hopmans ES, et al. Exosomes: fit to deliver small RNA [J]. Commun Integr Biol, 2010, 3(5): 447-450
19
Greening DW, Gopal SK, XU R, et al. Exosomes and their roles in immune regulation and cancer [J]. Semin Cell Dev Biol, 2015, 40: 72-81.
20
Chiarello DI, Salsoso R, Toledo F, et al. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia [J]. Mol Aspects Med, 2018, 60: 69-80.
21
Lee HM, Nguyen DT, Lu LF. Progress and challenge of microRNA research in immunity [J]. Front Genet, 2014, 5: 178.
22
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma [J]. Proc Natl Acad Sci U S A, 2011, 108(12): 5003-5008.
23
Ge Q, Zhou Y, Lu J, et al. miRNA in plasma exosome is stable under different, storage conditions [J]. Molecules, 2014, 19(2): 1568-1575.
24
Hromadnikova I, Kotlabova K, Ivankova K, et al. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR [J]. PLoS One, 2017, 12(2): e0171756.
25
Hromadnikova I, Dvorakova L, Kotlabova K, et al. The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs [J]. Int J Mol Sci, 2019, 20(12): 2972-2989.
26
Zhao XY, Li YM, Chen S, et al. Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia [J]. Biochem Biophys Res Commun, 2020, 525(3): 646-653.
27
Motawi TMK, Sabry D, Maurice NW, et al. Role of mesenchymal stem cells exosomes derived microRNAs; miR-136, miR-494 and miR-495 in pre-eclampsia diagnosis and evaluation [J]. Arch Biochem Biophys, 2018, 659: 13-21.
28
Biró O, Fóthi Á, Alasztics B, et al. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia [J]. Gene, 2019, 692: 138-144.
29
Anton L, Olarerin-George AO, Schwartz N, et al. miR-210 inhibits trophoblsat invasion and is a serum biomarker for preeclampsia [J]. Am J Pathol, 2013, 183(5): 1437-1445.
30
Wang N, Feng Y, Xu J, et al. miR-362-3p regulates cell proliferation, migration and invasion of trophoblastic cells under hypoxia through targeting Pax3 [J]. Biomed Pharmacother, 2018, 99: 462-468.
31
Bai Y, Yang W, Yang HX, et al. Downregulated miR-195 detected in preeclamptic placenta affects trophoblast cell invasion via modulating ActRIIA expression [J]. PLoS One, 2012, 7(6): e38875.
32
Xiao J, Tao T, Yin Y, et al. miR-144 may regulate the proliferation, migration and invasion of trophoblastic cells through targeting PTEN in preeclampsia [J]. Biomed Pharmacother, 2017, 94: 341-353.
33
Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia [J]. J Clin Invest, 2003, 111(5): 649-658.
34
Sandrim VC, Dias MC, Bovolato AL, et al. Plasma from pre-eclamptic patients induces the expression of the anti-angiogenic miR-195-5p in endothelial cells [J]. J Cell Mol Med, 2016, 20(6): 1198-1200.
35
Shen L, Li Y, Li R, et al. Placenta-associated serum exosomal miR-155 derived from patients with preeclampsia inhibits eNOS expression in human umbilical vein endothelial cells [J]. Int J Mol Med, 2018, 41(3): 1731-1739.
36
Bounds KR, Chiasson VL, Pan LJ, et al. MicroRNAs: new players in the pathobiology of preeclampsia [J]. Front Cardiovasc Med, 2017, 4: 60.
37
Perez-Sepulveda A, Torres MJ, Khoury M, et al. Innate immune system and preeclampsia [J]. Front Immunol, 2014, 5: 244.
38
Cornelius DC. Preeclampsia: from inflammation to immunoregulation [J]. Clin Med Insights Blood Disord, 2018, 11: 1179545X17752325.
39
Zhao M, Wang LT, Liang GP, et al. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+T cells of psoriasis vulgaris [J]. Clin Immunol, 2014, 150(1): 22-30.
40
Luo R, Shao X, Xu P, et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1 [J]. Hypertension, 2014, 64(4): 839-845.
41
Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia [J]. Am J Obstet Gynecol, 2007, 196(3): 261.e1-6.
42
Alivernini S, Gremese E, McSharry C, et al. MicroRNA-155-at the critical interface of innate and adaptive immunity in arthritis [J]. Front Immunol, 2018, 8: 1932.
43
Wang Z, Wang P, Wang Z, et al. MiRNA-548c-5p downregulates inflammatory response in preeclampsia via targeting PTPRO [J]. J Cell Physiol, 2019, 234(7): 11149-11155.
44
Ma HY, Cu W, Sun YH, et al. MiRNA-203a-3p inhibits inflammatory response in preeclampsia through regulating IL24 [J]. Eur Rev Med Pharmacol Sci, 2020, 24(10): 5223-5230.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[3] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[4] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[5] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[6] 汤宏涛, 何坤. 中晚期肝细胞癌介入治疗的进展及前景[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 305-308.
[7] 刘炯, 彭乐, 马伟, 江斌. 鞘外解剖肝蒂技术治疗肝内胆管细胞癌的疗效评估[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 373-376.
[8] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[9] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[10] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[11] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[12] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[13] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
阅读次数
全文


摘要