切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 123 -128. doi: 10.3877/cma.j.issn.1674-0785.2021.02.008

所属专题: 文献

综述

非小细胞肺癌靶向PET显像的临床研究进展
周欣1, 张慧媛1, 王淑静1, 朱华1, 杨志1, 李囡1,()   
  1. 1. 100142 北京,北京大学肿瘤医院暨北京市肿瘤防治研究所核医学科 国家药监局放射性药物研究与评价重点实验室 恶性肿瘤发病机制及转化研究教育部重点实验室
  • 收稿日期:2020-08-17 出版日期:2021-02-15
  • 通信作者: 李囡
  • 基金资助:
    国家自然科学基金(81871387); 北京市自然科学基金(7202027)

Recent clinical progress of targeted PET imaging for non-small cell lung cancer

Xin Zhou1, Huiyuan Zhang1, Shujing Wang1, Hua Zhu1, Zhi Yang1, Nan. Li1,()   

  1. 1. Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing 100142, China
  • Received:2020-08-17 Published:2021-02-15
  • Corresponding author: Nan. Li
引用本文:

周欣, 张慧媛, 王淑静, 朱华, 杨志, 李囡. 非小细胞肺癌靶向PET显像的临床研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(02): 123-128.

Xin Zhou, Huiyuan Zhang, Shujing Wang, Hua Zhu, Zhi Yang, Nan. Li. Recent clinical progress of targeted PET imaging for non-small cell lung cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(02): 123-128.

非小细胞肺癌(NSCLC)精准治疗的快速发展离不开靶向和免疫药物的临床应用,其中最受瞩目的是单克隆抗体(mAbs)和酪氨酸激酶抑制剂(TKIs)。将放射性核素标记的mAbs及TKIs作为分子探针对NSCLC患者进行正电子断层显像(PET),可通过无创的方式完成相应靶点表达水平的检测。mAbs-PET的显像靶点是以程序性死亡蛋白及其配体[PD-(L)1]为代表的细胞表面蛋白受体,临床转化研究表明mAbs-PET显像可检测相应受体的表达程度,并且肿瘤的摄取程度可提示临床预后。TKI-PET的显像靶点是以表皮生长因子受体(EGFR)为代表的酪氨酸激酶,研究表明TKI-PET显像可提示相应激酶靶点存在与否,肿瘤的摄取程度与相应激酶表达程度及TKI治疗疗效相关,同时TKI-PET显像可辅助筛选临床可能受益的患者,对临床治疗有指导意义。非侵入性靶向PET显像可直观显示药物在体内的代谢分布情况并进行定量研究,可避免依赖于组织活检的有创性受体检测,同时其全身大视野成像可进行体内所有病灶相关特征的观察,从而更好的辅助疾病诊断及治疗疗效预测。本综述总结了目前关于mAbs-PET及TKI-PET用于NSCLC的相关临床转化研究现状,并阐述其对于NSCLC临床个体化治疗的作用及意义。

The rapid development of precision treatment mode of non-small cell lung cancer (NSCLC) is dependent on the clinical promotion and application of monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs). Non-invasive positron emission tomography (PET) in NSCLC patients with radio-labeled mAbs and TKIs as molecular probes can detect the expression level of corresponding targets. Targets of mAbs-PET are protein receptors on cell surface represented by programmed death protein and its ligand [PD-(L) 1]. Clinical translational studies showed that mAb-PET could detect the expression of corresponding receptor, and the uptake of tumor indicated clinical prognosis. Targets of TKI-PET imaging is tyrosine kinase represented by epidermal growth factor receptor (EGFR). Studies have shown that TKI-PET could indicate whether the corresponding kinase target existed, and the uptake of tumor was related to the expression of the corresponding kinase and the therapeutic effect of TKI. Meanwhile, TKI-PET can assist in screening patients who may benefit from TKI therapy, which is of great clinical significance. Non-invasive targeted PET imaging could display and quantify metabolic distribution of drugs in vivo, which can avoid the invasive receptor expression test relying on tissue biopsy. At the same time, whole-body imaging of PET could identify characteristics of all lesions, thus assisting in diagnosis and prediction of therapeutic effects. This review summarizes researches concerning clinical translation of mAb-PET and TKI-PET in NSCLC, and expounds their role and significance in clinical individualized treatment of this malignancy.

图1 非小细胞肺癌常用靶向药物及其作用靶点简化示意图
1
Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship [J]. Mayo Clin Proc, 2008, 83(5): 584-594.
2
National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in non-small cell lung cancer, Version 5. 2019[EB/OL]. 2019-06-07.

URL    
3
Brugger W, Triller N, Blasinska-Morawiec M, et al. Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer [J]. J Clin Oncol, 2011, 29(31): 4113-4120.
4
Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma [J]. N Engl J Med, 2009, 361(10): 947-957.
5
Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR [J]. N Engl J Med, 2010, 362(25): 2380-2388.
6
Reck M, von Pawel J, Zatloukal P, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL) [J]. Ann Oncol, 2010, 21(9): 1804-1809.
7
Sun X, Xiao Z, Chen G, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management [J]. Sci Transl Med, 2018, 10(431):eaan8840.
8
Slobbe P, Windhorst AD, Stigter-van Walsum M, et al. A comparative PET imaging study with the reversible and irreversible EGFR tyrosine kinase inhibitors [(11)C]erlotinib and [(18)F]afatinib in lung cancer-bearing mice [J]. EJNMMI Res, 2015, 5: 14.
9
Jauw YW, Menke-van der Houven van Oordt CW, Hoekstra OS, et al. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? [J] Front Pharmacol, 2016, 7: 131.
10
Bahce I, Yaqub M, Smit EF, et al. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET [J]. Lung Cancer, 2017, 107: 1-13.
11
Gandini S, Massi D, Mandala M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis [J]. Crit Rev Oncol Hematol, 2016, 100: 88-98.
12
Bensch F, van der Veen EL, Lub-de Hooge MN, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer [J]. Nat Med, 2018, 24(12): 1852-1858.
13
Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer [J]. Nat Commun, 2018, 9(1): 4664.
14
Huisman M, Niemeijer AL, Windhorst B, et al. Quantification of PD-L1 expression with [18F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer [J]. J Nucl Med, 2020, 61(10): 1455-1460.
15
Chatterjee S, Lesniak WG, Miller MS, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide [J]. Biochem Biophys Res Commun, 2017, 483(1): 258-263.
16
De Silva RA, Kumar D, Lisok A, et al. Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer [J]. Mol Pharm, 2018, 15(9): 3946-3952.
17
Nayak TK, Garmestani K, Milenic DE, et al. PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab [J]. J Nucl Med, 2012, 53(1): 113-120.
18
van Loon J, Even AJG, Aerts H, et al. PET imaging of zirconium-89 labelled cetuximab: A phase I trial in patients with head and neck and lung cancer [J]. Radiother Oncol, 2017, 122(2): 267-273.
19
Nayak TK, Garmestani K, Baidoo KE, et al. PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A''-DTPA-bevacizumab [J]. Int J Cancer, 2011, 128(4): 920-926.
20
Bahce I, Huisman MC, Verwer EE, et al. Pilot study of (89)Zr-bevacizumab positron emission tomography in patients with advanced non-small cell lung cancer [J]. EJNMMI Res, 2014, 4(1): 35-35.
21
Luo H, England CG, Graves SA, et al. PET Imaging of VEGFR-2 Expression in Lung Cancer with 64Cu-Labeled Ramucirumab [J]. J Nucl Med, 2016, 57(2): 285-290.
22
Shea M, Costa DB, Rangachari D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches [J]. Ther Adv Respir Dis, 2016, 10(2): 113-129.
23
Carey KD, Garton AJ, Romero MS, et al. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib [J]. Cancer Res, 2006, 66(16): 8163-8171.
24
Bahce I, Smit EF, Lubberink M, et al. Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status [J]. Clin Cancer Res, 2013, 19(1): 183-193.
25
Bahce I, Yaqub M, Errami H, et al. Effects of erlotinib therapy on [(11)C]erlotinib uptake in EGFR mutated, advanced NSCLC [J]. EJNMMI Res, 2016, 6(1): 10.
26
Meng X, Loo BW, Ma L, et al. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study [J]. J Nucl Med, 2011, 52(10): 1573-1579.
27
Memon AA, Weber B, Winterdahl M, et al. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer [J]. Br J Cancer, 2011, 105(12): 1850-1855.
28
Weber B, Winterdahl M, Memon A, et al. Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor [J]. J Thorac Oncol, 2011, 6(7): 1287-1289.
29
Collier TL, Normandin MD, Stephenson NA, et al. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib [J]. Nat Commun, 2017, 8:15761.
[1] 韩萌萌, 冯雪园, 马宁. 注射用曲妥珠单克隆抗体致重度血小板减少一例[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 187-189.
[2] 徐天亮, 程干思, 吴亚平, 龚荣, 胡洁, 段群娣, 李承慧. 奥希替尼联合安罗替尼二线治疗转移性NSCLC的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 520-522.
[3] 魏婷婷, 胡小红, 龚自强, 熊鹿. 老年非小细胞肺癌组织ARPC2表达及与预后关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 584-586.
[4] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[5] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[6] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[7] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[8] 杨豪, 王云川, 陈有英. 硬膜外阻滞复合羟考酮镇痛在非小细胞肺癌患者中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 370-372.
[9] 李多, 郝昭昭, 陈延伟, 南岩东. Wnt/β-Catenin通路促进非小细胞肺癌转移机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 281-284.
[10] 邹琴, 龙玲, 叶容, 张小洪. PD-1抑制剂免疫治疗NSCLC所致反应性毛细血管增生症的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 278-280.
[11] 仇丽敏, 胡航, 孙云浩, 孙健, 陈婷婷. NSCLC患者根治性切除术后复发风险分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 242-244.
[12] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[13] 李一然, 王玉秀, 朱研, 王梦, 刘颖, 闫文锦, 徐兴祥, 闵凌峰. 基于GEO数据库分析影响纳武单抗及派姆单抗治疗非小细胞肺癌疗效的差异基因[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 20-25.
[14] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[15] 黄文鹏, 邱永康, 杨琦, 宋乐乐, 陈钊, 范岩, 康磊. PET相关影像组学在肿瘤预后中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 104-110.
阅读次数
全文


摘要