1 |
Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship [J]. Mayo Clin Proc, 2008, 83(5): 584-594.
|
2 |
National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in non-small cell lung cancer, Version 5. 2019[EB/OL]. 2019-06-07.
URL
|
3 |
Brugger W, Triller N, Blasinska-Morawiec M, et al. Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer [J]. J Clin Oncol, 2011, 29(31): 4113-4120.
|
4 |
Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma [J]. N Engl J Med, 2009, 361(10): 947-957.
|
5 |
Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR [J]. N Engl J Med, 2010, 362(25): 2380-2388.
|
6 |
Reck M, von Pawel J, Zatloukal P, et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL) [J]. Ann Oncol, 2010, 21(9): 1804-1809.
|
7 |
Sun X, Xiao Z, Chen G, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management [J]. Sci Transl Med, 2018, 10(431):eaan8840.
|
8 |
Slobbe P, Windhorst AD, Stigter-van Walsum M, et al. A comparative PET imaging study with the reversible and irreversible EGFR tyrosine kinase inhibitors [(11)C]erlotinib and [(18)F]afatinib in lung cancer-bearing mice [J]. EJNMMI Res, 2015, 5: 14.
|
9 |
Jauw YW, Menke-van der Houven van Oordt CW, Hoekstra OS, et al. Immuno-positron emission tomography with zirconium-89-labeled monoclonal antibodies in oncology: what can we learn from initial clinical trials? [J] Front Pharmacol, 2016, 7: 131.
|
10 |
Bahce I, Yaqub M, Smit EF, et al. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET [J]. Lung Cancer, 2017, 107: 1-13.
|
11 |
Gandini S, Massi D, Mandala M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis [J]. Crit Rev Oncol Hematol, 2016, 100: 88-98.
|
12 |
Bensch F, van der Veen EL, Lub-de Hooge MN, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer [J]. Nat Med, 2018, 24(12): 1852-1858.
|
13 |
Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer [J]. Nat Commun, 2018, 9(1): 4664.
|
14 |
Huisman M, Niemeijer AL, Windhorst B, et al. Quantification of PD-L1 expression with [18F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer [J]. J Nucl Med, 2020, 61(10): 1455-1460.
|
15 |
Chatterjee S, Lesniak WG, Miller MS, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide [J]. Biochem Biophys Res Commun, 2017, 483(1): 258-263.
|
16 |
De Silva RA, Kumar D, Lisok A, et al. Peptide-based (68)Ga-PET radiotracer for imaging PD-L1 expression in cancer [J]. Mol Pharm, 2018, 15(9): 3946-3952.
|
17 |
Nayak TK, Garmestani K, Milenic DE, et al. PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab [J]. J Nucl Med, 2012, 53(1): 113-120.
|
18 |
van Loon J, Even AJG, Aerts H, et al. PET imaging of zirconium-89 labelled cetuximab: A phase I trial in patients with head and neck and lung cancer [J]. Radiother Oncol, 2017, 122(2): 267-273.
|
19 |
Nayak TK, Garmestani K, Baidoo KE, et al. PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A''-DTPA-bevacizumab [J]. Int J Cancer, 2011, 128(4): 920-926.
|
20 |
Bahce I, Huisman MC, Verwer EE, et al. Pilot study of (89)Zr-bevacizumab positron emission tomography in patients with advanced non-small cell lung cancer [J]. EJNMMI Res, 2014, 4(1): 35-35.
|
21 |
Luo H, England CG, Graves SA, et al. PET Imaging of VEGFR-2 Expression in Lung Cancer with 64Cu-Labeled Ramucirumab [J]. J Nucl Med, 2016, 57(2): 285-290.
|
22 |
Shea M, Costa DB, Rangachari D. Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches [J]. Ther Adv Respir Dis, 2016, 10(2): 113-129.
|
23 |
Carey KD, Garton AJ, Romero MS, et al. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib [J]. Cancer Res, 2006, 66(16): 8163-8171.
|
24 |
Bahce I, Smit EF, Lubberink M, et al. Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status [J]. Clin Cancer Res, 2013, 19(1): 183-193.
|
25 |
Bahce I, Yaqub M, Errami H, et al. Effects of erlotinib therapy on [(11)C]erlotinib uptake in EGFR mutated, advanced NSCLC [J]. EJNMMI Res, 2016, 6(1): 10.
|
26 |
Meng X, Loo BW, Ma L, et al. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study [J]. J Nucl Med, 2011, 52(10): 1573-1579.
|
27 |
Memon AA, Weber B, Winterdahl M, et al. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer [J]. Br J Cancer, 2011, 105(12): 1850-1855.
|
28 |
Weber B, Winterdahl M, Memon A, et al. Erlotinib accumulation in brain metastases from non-small cell lung cancer: visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor [J]. J Thorac Oncol, 2011, 6(7): 1287-1289.
|
29 |
Collier TL, Normandin MD, Stephenson NA, et al. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib [J]. Nat Commun, 2017, 8:15761.
|