切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 605 -613. doi: 10.3877/cma.j.issn.1674-0785.2023.05.019

综述

IL-8与肿瘤免疫的研究进展
张琪悦, 王晓东()   
  1. 100043 北京,北京大学首钢医院肿瘤内科
  • 收稿日期:2023-03-08 出版日期:2023-05-15
  • 通信作者: 王晓东

Progress in understanding of relationship between IL-8 and tumor immunity

Qiyue Zhang, Xiaodong Wang()   

  1. Department of Medical Oncology, Peking University Shougang Hospital, Beijing 100043, China
  • Received:2023-03-08 Published:2023-05-15
  • Corresponding author: Xiaodong Wang
引用本文:

张琪悦, 王晓东. IL-8与肿瘤免疫的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 605-613.

Qiyue Zhang, Xiaodong Wang. Progress in understanding of relationship between IL-8 and tumor immunity[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(05): 605-613.

IL-8是最早被发现的趋化性细胞因子,在结肠癌、乳腺癌、黑色素瘤、卵巢癌等多种实体瘤中表达上调。IL-8-CXCR1/2信号通路可通过激活JAK/STAT、PI3K/Akt等多种信号通路,促进免疫抑制性细胞向肿瘤微环境的浸润、血管生成、上皮-间充质转化、干性表型的获得等过程,进一步促进肿瘤的生长、侵袭、转移及耐药性。目前认为IL-8是调节肿瘤微环境的关键因子。越来越多的研究关注IL-8-CXCR1/2信号通路相关的抗肿瘤治疗。本文就IL-8-CXCR1/2信号通路在肿瘤发生、发展、转移及免疫抑制的作用及靶向IL-8-CXCR1/2信号通路的研究进展作一综述。

Interleukin (IL)-8 is the first discovered chemotactic cytokine, and its expression is up-regulated in a variety of solid tumors such as colorectal cancer, breast cancer, melanoma, and ovarian cancer. Recent studies have shown that the IL-8-CXCR1/2 axis can promote the infiltration of immunosuppressive cells, such as myeloid-derived suppressor cells, into the tumor microenvironment, angiogenesis, epithelial-mesenchymal transition, and the acquisition of stem-like phenotypes by activating JAK/STAT, PI3K/Akt, and other signaling pathways. These signaling pathways can further promote tumor growth, invasion, metastasis, and drug resistance. Recently, IL-8 is considered to be a key factor in the regulation of the tumor microenvironment. More and more preclinical data suggest that blockade of the IL-8-CXCR1/2 axis can enhance the tumor killing function of T cells and NK cells. The combining of inhibition of the IL-8-CXCR1/2 axis with immune checkpoint inhibitors may be a promising treatment strategy for tumor. Here, we review the role of the IL-8-CXCR1/2 signaling pathway in tumor occurrence, development, metastasis, and immunosuppression, and the research and clinical trials of drugs targeting the IL-8-CXCR1/2 signaling pathway.

表1 IL-8拮抗剂相关临床试验
表2 CXCR1/2拮抗剂相关临床试验
CXCR1/2拮抗剂 文章标题 临床试验号 状态
SX-682 SX-682 Treatment in Subjects With Myelodysplastic Syndrome Who Had Disease Progression or Are Intolerant to Prior Therapy NCT04245397 R
SX-682 SX-682 Treatment in Subjects With Metastatic Melanoma Concurrently Treated With Pembrolizumab NCT03161431 R
SX-682 A Study to Evaluate the Safety and Tolerability of SX-682 in Combination With Nivolumab as a Maintenance Therapy in Patients With Metastatic Pancreatic Ductal Adenocarcinoma NCT04477343 R
瑞帕利辛 Phase Ib Pilot Study to Evaluate Reparixin in Combination with Weekly Paclitaxel in Patients with HER-2-Negative Metastatic Breast Cancer NCT02001974 C
瑞帕利辛 A randomized,placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer(fRida) NCT02370238C C
瑞帕利辛 A window-of-opportunity trial of the CXCR1/2 inhibitor reparixin in operable HER-2-negative breast cancer NCT01861054 C
AZD5069 Combination Study of AZD5069 and Enzalutamide NCT03177187 Aa
AZD5069 Study to Assess MEDI4736 With Either AZD9150 or AZD5069 in Advanced Solid Tumors & Relapsed Metastatic Squamous Cell Carcinoma of Head & Neck NCT02499328 A
AZD5069 Phase Ib/II Study of MEDI4736 Evaluated in Different Combinations in Metastatic Pancreatic Ductal Carcinoma NCT02583477 C
Navarixin Efficacy and Safety Study of Navarixin(MK-7123)in Combination With Pembrolizumab(MK-3475)in Adults With Selected Advanced/Metastatic Solid Tumors(MK-7123-034) NCT03473925 C
1
Matsushima K, Baldwin E T, Mukaida N, et al. Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines [J]. Chem Immunol, 1992, 51: 236-265.
2
Brat Daniel J, Bellail Anita C, G Van Meir Erwin, et al. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis [J]. Neuro Oncol, 2005, 7(2): 122-133.
3
Skelton N J, Quan C, Reilly D, et al. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure [J]. 1999, 7(2):157-68.
4
Chuntharapai A, Lee J, Hébert C A, et al. Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes [J]. J Immunol, 1994, 153(12): 5682-5688.
5
Zhou Q, Jin P, Liu J, et al. HER2 overexpression triggers the IL-8 to promote arsenic-induced EMT and stem cell-like phenotypes in human bladder epithelial cells [J]. Ecotoxicol Environ Saf, 2021, 208:111693.
6
Zhang Mingjie, Huang Lifeng, Ding Guoping, et al. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer [J]. J Immunother Cancer, 2020, 8(1): e000308.
7
Li Enhao, Yang Xiaobao, Du Yuzhang, et al. CXCL8 associated dendritic cell activation marker expression and recruitment as indicators of favorable outcomes in colorectal cancer [J]. Front Immunol, 2021, 12: 667177.
8
Fan Yang, Liu Xue-Qi, He Jian-Zhong, et al. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4 [J]. J Cell Mol Med, 2022, 26(8): 2363-2376.
9
Bazzichetto Chiara, Milella Michele, Zampiva Ilaria, et al. Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro [J]. Biomedicines, 2022, 10(10): 2631.
10
Ina H Benoy, Salgado Roberto, Van Dam Peter, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival [J]. Clin Cancer Res, 2004, 10(21): 7157-7162.
11
Xi Yan, Han Lina, Zhao Riyang, et al. Prognosis value of IL-6, IL-8, and IL-1β in serum of patients with lung cancer: A fresh look at interleukins as a biomarker [J]. Heliyon, 2022, 8(8): e09953.
12
Zhou Jiebai, Lu Xinyuan, Zhu Haixing, et al. Resistance to immune checkpoint inhibitors in advanced lung cancer: Clinical characteristics, potential prognostic factors and next strategy [J]. Front Immunol, 2023, 14: 1089026.
13
Merz Valeria, Zecchetto Camilla, Santoro Raffaela, et al. Plasma IL8 is a biomarker for TAK1 activation and predicts resistance to nanoliposomal irinotecan in patients with gemcitabine-refractory pancreatic cancer [J]. Clin Cancer Res, 2020, 26(17): 4661-4669.
14
Öcal Osman, Schütte Kerstin, Kupčinskas Juozas, et al. Baseline Interleukin-6 and -8 predict response and survival in patients with advanced hepatocellular carcinoma treated with sorafenib monotherapy: an exploratory post hoc analysis of the SORAMIC trial [J]. J Cancer Res Clin Oncol, 2022, 148(2): 475-485.
15
Huang Zhengyuan, Li Zhaozhong, Chen Xianqiang, et al. Comparison between clinical utility of CXCL-8 and clinical practice tumor markers for colorectal cancer diagnosis [J]. Biomed Res Int, 2022, 2022: 1213968.
16
Rubie Claudia, Vilma Oliveira Frick, Pfeil Sandra, et al. Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer [J]. World J Gastroenterol, 2007, 13(37): 4996-5002.
17
Benoy IH, Salgado R, Van Dam P, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival [J]. Clin Cancer Res, 2004, 10(21): 7157-7162.
18
Murali Mohan Sagar Balla, Patwardhan Sejal, Pooja Kamal Melwani, et al. Prognosis of metastasis based on age and serum analytes after follow-up of non-metastatic lung cancer patients [J]. Transl Oncol, 2021, 14(1): 100933.
19
Jo Hitomi, Yoshida Tatsuya, Horinouchi Hidehito, et al. Prognostic significance of cachexia in advanced non-small cell lung cancer patients treated with pembrolizumab [J]. Cancer Immunol Immunother, 2022, 71(2): 387-398.
20
Keskin Serkan, Ali Cevat Kutluk, Tas Faruk, et al. Prognostic and predictive role of angiogenic markers in non-small cell lung cancer [J]. Asian Pac J Cancer Prev, 2019, 20(3): 733-736.
21
Bejarano Leire, J C Jordāo Marta, Joyce Johanna A, et al. Therapeutic targeting of the tumor microenvironment [J]. Cancer Discov, 2021, 11(4): 933-959.
22
Turley Shannon J, Cremasco Viviana, Astarita Jillian L. Immunological hallmarks of stromal cells in the tumour microenvironment [J]. Nat Rev Immunol, 2015, 15(11): 669-682.
23
Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment [J]. Nat Rev Immunol, 2015, 15(11): 669-682.
24
Hegde Samarth, Leader Andrew M, Merad Miriam, et al. MDSC: Markers, development, states, and unaddressed complexity [J]. Review Immunity, 2021, 54(5): 875-884.
25
Wu Yuze, Ming Yi, Niu Mengke, et al. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy [J]. Mol Cancer, 2022, 21(1): 184.
26
Zhang Qianfei, Chi Ma, Yi Duan, et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma [J]. Cancer Discov, 2021, 11(5): 1248-1267.
27
Tomela Katarzyna, Pietrzak Bernadeta, Galus Łukasz, et al. Myeloid-Derived Suppressor Cells (MDSC) in melanoma patients treated with Anti-PD-1 immunotherapy [J]. Cells, 2023, 12(5): 789.
28
Zhang H, Ye Y-L, Li M-X, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer [J]. Oncogene, 2017, 36(15): 2095-2104.
29
Mao Fang-Yuan, Zhao Yong-Liang, Lv Yi-Pin, et al. CD45+CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8+ T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer [J]. Cell Death Dis, 2018, 9(7): 763.
30
Rao HL, Chen JW, Li M, et al. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients' adverse prognosis [J]. PLoS One, 2012, 7(1): e30806.
31
Zippoli Mara, Ruocco Anna, Novelli Rubina, et al. The role of extracellular vesicles and interleukin-8 in regulating and mediating neutrophil-dependent cancer drug resistance [J]. Front Oncol, 2022, 12: 947183.
32
Yuan Cheng, Fei Mo, Li Qingfang, et al. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin [J]. Mol Cancer, 2021, 20(1): 62.
33
Fridlender Zvi G, Jing Sun, Kim Samuel, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN [J]. Cancer Cell, 2009, 16(3): 183-194.
34
Bordbari Sharareh, Mörchen Britta, Pylaeva Ekaterina, et al. SIRT1-mediated deacetylation of FOXO3a transcription factor supports pro-angiogenic activity of interferon-deficient tumor-associated neutrophils [J]. Int J Cancer, 2022, 150(7): 1198-1211.
35
Rodriguez Paulo C, Quiceno David G, Zabaleta Jovanny, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses [J]. Cancer Res, 2004, 64(16): 5839-5849.
36
Yang Moran, Zhang Guodong, Wang Yiying, et al. Tumour-associated neutrophils orchestrate intratumoural IL-8-driven immune evasion through Jagged2 activation in ovarian cancer [J]. Br J Cancer, 2020, 123(9): 1404-1416.
37
Li Peishan, Ming Lu, Shi Jiayuan, et al. Dual roles of neutrophils in metastatic colonization are governed by the host NK cell status [J]. Nat Commun, 2020, 11(1): 4387.
38
Butin-Israeli Veronika, Bui Triet M, Wiesolek Hannah L, et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing [J]. J Clin Invest, 2019, 129(2): 712-726.
39
Shao CBo-Zong, Yi Yao, Li Jin-Ping, et al. The role of neutrophil extracellular traps in cancer [J]. Front Oncol, 2021, 11: 714357.
40
Carlos E de Andrea, María Carmen Ochoa, Villalba-Esparza María, et al. Heterogenous presence of neutrophil extracellular traps in human solid tumours is partially dependent on IL-8 [J]. J Pathol, 2021, 255(2): 190-201.
41
Fousert Esther, Toes René, Desai Jyaysi. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses [J]. Cells, 2020, 9(4): 915.
42
Yang Linbin, Qiang Liu, Zhang Xiaoqian, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25 [J]. Nature, 2020, 583(7814): 133-138.
43
Dickson Iain. NETs promote liver metastasis via CCDC25 [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 451.
44
Martins-Cardoso Karina, Almeida Vitor H, Bagri Kayo M, et al. Neutrophil Extracellular Traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial-mesenchymal transition [J]. Cancers (Basel), 2020, 12(6): 1542.
45
Albrengues Jean, Shields Mario A, Ng David, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice [J]. Science, 2018, 361(6409): eaao4227.
46
Teijeira Álvaro, Garasa Saray, Gato María, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity [J]. Immunity, 2020, 52(5): 856-871.e8.
47
Liu X, Wang Y, Bauer AT, et al. Neutrophils activated by membrane attack complexes increase the permeability of melanoma blood vessels [J]. Proc Natl Acad Sci USA, 2022, 119(33): e2122716119.
48
Yazdani HO, Roy E, Comerci AJ, et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth [J]. Cancer Res, 2019, 79(21): 5626-5639.
49
Väyrynen Juha P, Haruki Koichiro, Chan Lau Mai, et al. The prognostic role of macrophage polarization in the colorectal cancer microenvironment [J]. Cancer Immunol Res, 2021, 9(1): 8-19.
50
Casanova-Acebes María, Dalla Erica, Leader Andrew M, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells [J]. Nature, 2021, 595(7868): 578-584.
51
Nixon Briana G, Kuo Fengshen, Ji LiangLiang, et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer [J]. Immunity, 2022, 55(11): 2044-2058.
52
Dallavalasa Siva, Beeraka Narasimha M, Basavaraju Chaithanya G, et al. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis - current status [J]. Curr Med Chem, 2021, 28(39): 8203-8236.
53
Shi Qingzhu, Shen Qicong, Liu Yanfang, et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance [J]. Cancer Cell, 2022, 40(10): 1207-1222.
54
Fang Weiyuan, Lei Ye, Shen Liyun, et al. Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8 [J]. Carcinogenesis, 2014, 35(8): 1780-1787.
55
Xiang Xiaonan, Wang Jianguo, Di Lu, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy [J]. Signal Transduct Target Ther, 2021, 6(1): 75.
56
Wang Qiwei, Bergholz Johann S, Ding Liya, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer [J]. Nat Commun, 2022, 13(1): 3022.
57
Nie Gang, Cao Xiangbo, Yan Mao, et al. Tumor-associated macrophages-mediated CXCL8 infiltration enhances breast cancer metastasis: Suppression by Danirixin [J]. Int Immunopharmacol, 2021, 95: 107153.
58
Masuya D, Huang C, Liu D, et al. The intratumoral expression of vascular endothelial growth factor and interleukin-8 associated with angiogenesis in nonsmall cell lung carcinoma patients [J]. Cancer, 2001, 92(10): 2628-2638.
59
Pei Xiao, Long Xinxin, Zhang Lijie, et al. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells [J]. Oncoimmunology, 2018, 7(7): e1440166.
60
Caio Luiz Bitencourt Reis, Taíssa Cássia de Souza Furtado, Wendes Dias Mendes, et al. Photobiomodulation impacts the levels of inflammatory mediators during orthodontic tooth movement? A systematic review with meta-analysis [J]. Lasers Med Sci, 2022, 37(2): 771-787.
61
Ning Yingxia, Cui Yinghong, Xiang Li, et al. Co-culture of ovarian cancer stem-like cells with macrophages induced SKOV3 cells stemness via IL-8/STAT3 signaling [J]. Biomed Pharmacother, 2018, 103: 262-271.
62
Chen Shao-Jie, Lian Guo-da, Li Jia-Jia, et al. Tumor-driven like macrophages induced by conditioned media from pancreatic ductal adenocarcinoma promote tumor metastasis via secreting IL-8 [J]. Cancer Med, 2018, 7(11): 5679-5690.
63
Jing Zhai, Shen Jiajia, Xie Guiping, et al. Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer [J]. Cancer Lett, 2019, 454: 37-43.
64
Dabkeviciene Daiva, Jonusiene Violeta, Zitkute Vilmante, et al. The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116 [J]. Med Oncol, 2015, 32(12): 258.
65
Imafuji Hiroyuki, Matsuo Yoichi, Ueda Goro, et al. Acquisition of gemcitabine resistance enhances angiogenesis via upregulation of IL-8 production in pancreatic cancer [J]. Oncol Rep, 2019, 41(6): 3508-3516.
66
Sootichote Rochanawan, Thuwajit Peti, Singsuksawat Ekapot, et al. Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8 [J]. BMC Cancer, 2018, 18(1): 231.
67
Kumar Abhishek, Cherukumilli Madhuri, Seyed Hamidreza Mahmoudpour, et al. ShRNA-mediated knock-down of CXCL8 inhibits tumor growth in colorectal liver metastasis [J]. Biochem Biophys Res Commun, 2018, 500(3): 731-737.
68
Dominguez Charli, McCampbell Kristen K, David Justin M, et al. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer [J]. JCI Insight, 2017, 2(21): e94296.
69
Bilusic Marijo, Heery Christopher R, Collins Julie M, et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors [J]. J Immunother Cancer, 2019, 7(1): 240.
70
Huang Suyun, Mills Lisa, Mian Badar, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma [J]. Am J Pathol, 2002, 161(1): 125-134
71
Mian Badar M, P N Dinney Colin, Bermejo Carlos E, et al. Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB [J]. Clin Cancer Res, 2003, 9(8): 3167-3175.
72
Wu Kongming, Katiyar Sanjay, Li Anping, et al. Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8 [J]. Proc Natl Acad Sci U S A, 2008, 105(19): 6924-6929.
73
Ke Chen, Wu Kongming, Jiao Xuanmao, et al. The endogenous cell-fate factor dachshund restrains prostate epithelial cell migration via repression of cytokine secretion via a cxcl signaling module [J]. Cancer Res, 2015, 75(10): 1992-2004.
74
Lillian Sun, Paul E Clavijo, Yvette Robbins, et al, Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy [J]. JCI Insight, 2019, 4(7): e126853.
75
Greene Sarah, Robbins Yvette, Mydlarz Wojciech K, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-Cell immunotherapy in head and neck cancer models [J]. Clin Cancer Res, 2020, 26(6): 1420-1431.
76
Kargl Julia, Zhu Xiaodong, Zhang Huajia, et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC [J]. JCI Insight, 2019, 4(24): e130850.
77
Yang Jinming, Chi Yan, Vilgelm Anna E, et al. Targeted deletion of CXCR2 in myeloid cells alters the tumor immune environment to improve antitumor immunity [J]. Cancer Immunol Res, 2021, 9(2): 200-213.
78
Bertini Riccardo, Allegretti Marcello, Bizzarri Cinzia, et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury [J]. Proc Natl Acad Sci U S A, 2004, 101(32): 11791-11796.
79
Casilli Federica, Bianchini Andrea, Gloaguen Isabelle, et al. Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2 [J]. Biochem Pharmacol, 2005, 69(3): 385-394.
80
Ginestier Christophe, Liu Suling, Diebel Mark E, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts [J]. J Clin Invest, 2010, 120(2): 485-497.
81
Fousek Kristen, Horn Lucas A, Palena Claudia, et al. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression [J]. Pharmacol Ther, 2021, 219: 107692.
82
Goldstein Lori J, Mansutti Mauro, Levy Christelle, et al. A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (fRida) [J]. Breast Cancer Res Treat, 2021, 190(2): 265-275.
83
Nicholls David J, Wiley Katherine, Dainty Ian, et al. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist [J]. J Pharmacol Exp Ther, 2015, 353(2): 340-350.
84
Diletta Di Mitri, Mirenda Michela, Vasilevska Jelena, et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer [J]. Cell Rep, 2019, 28(8): 2156-2168.e5.
85
Gonsiorek Waldemar, Fan Xuedong, Hesk David, et al. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist [J]. J Pharmacol Exp Ther, 2007, 322(2): 477-485.
86
Planagumà A, Domènech T, Pont M, et al. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation [J]. Pulm Pharmacol Ther, 2015, 34: 37-45.
87
Singh Seema, Sadanandam Anguraj, Nannuru Kalyan C, et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis [J]. Clin Cancer Res, 2009, 15(7): 2380-2386.
88
Fu Shengling, Lin Jiayuh. Blocking interleukin-6 and interleukin-8 signaling inhibits cell viability, colony-forming activity, and cell migration in human triple-negative breast cancer and pancreatic cancer cells [J]. Anticancer Res, 2018, 38(11): 6271-6279.
89
Yan Ning, Labonte Melissa J, Wu Zhang, et al. The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models [J]. Mol Cancer Ther, 2012, 11(6): 1353-1364.
90
Varney Michelle L, Singh Seema, Li Aihua, et al. Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases [J]. Cancer Lett, 2011, 300(2): 180-188.
91
Busch-Petersen Jakob, Carpenter Donald C, Burman Miriam, et al. Danirixin: A reversible and selective antagonist of the CXC chemokine receptor 2 [J]. J Pharmacol Exp Ther, 2017, 362(2): 338-346.
92
White J R, Lee J M, Young P R, et al. Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration [J]. J Biol Chem, 1998, 273(17): 10095-10098.
93
Kim Sangmin, You Daeun, Jeong Yisun, et al. WNT5A augments cell invasiveness by inducing CXCL8 in HER2-positive breast cancer cells [J]. Cytokine, 2020, 135: 155213.
94
Yung Mingo Ming-Ho, Wai-Man Tang Hermit, Chun-Hui Cai Patty, et al. GRO-α and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFκB signaling cascade [J]. Theranostics, 2018, 8(5): 1270-1285.
95
Cheng Jingying, Ying Li, Liu Shiqi, et al. CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway [J]. FASEB J, 2019, 33(4): 4755-4764.
96
Liu Xiaobei, Lan Tianxia, Fei Mo, et al. Antitumor and radiosensitization effects of a CXCR2 inhibitor in nasopharyngeal carcinoma [J]. Front Cell Dev Biol, 2021, 9: 689613.
97
Singh Jagdeep K, Farnie Gillian, Bundred Nigel J, et al. Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms [J]. Clin Cancer Res, 2013, 19(3): 643-656.
98
Xin Liu, Jing Peng, Sun Wenchang, et al. G31P, an antagonist against CXC chemokine receptors 1 and 2, inhibits growth of human prostate cancer cells in nude mice [J]. Tohoku J Exp Med, 2012, 228(2): 147-156.
99
Sanmamed M F, Perez-Gracia J L, Schalper K A, et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients [J]. Ann Oncol, 2017, 28(8): 1988-1995.
100
Yuen Kobe C, Liu Li-Fen, Gupta Vinita, et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade [J]. Nat Med, 2020, 26(5): 693-698
101
Schalper Kurt A, Carleton Michael, Ming Zhou, et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors [J]. Nat Med, 2020, 26(5): 688-692.
102
Horn Lucas A, Riskin Jeffrey, Hempel Heidi A, et al. Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity [J]. J Immunother Cancer, 2020, 8(1): e000326.
103
Najjar Yana G, Rayman Patricia, Jia Xuefei, et al. Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1β, IL8, CXCL5, and mip-1α [J]. Clin Cancer Res, 2017, 23(9): 2346-2355.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[4] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[5] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[9] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[10] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[11] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[12] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[13] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[14] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[15] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
阅读次数
全文


摘要