1 |
Matsushima K, Baldwin E T, Mukaida N, et al. Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines [J]. Chem Immunol, 1992, 51: 236-265.
|
2 |
Brat Daniel J, Bellail Anita C, G Van Meir Erwin, et al. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis [J]. Neuro Oncol, 2005, 7(2): 122-133.
|
3 |
Skelton N J, Quan C, Reilly D, et al. Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure [J]. 1999, 7(2):157-68.
|
4 |
Chuntharapai A, Lee J, Hébert C A, et al. Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes [J]. J Immunol, 1994, 153(12): 5682-5688.
|
5 |
Zhou Q, Jin P, Liu J, et al. HER2 overexpression triggers the IL-8 to promote arsenic-induced EMT and stem cell-like phenotypes in human bladder epithelial cells [J]. Ecotoxicol Environ Saf, 2021, 208:111693.
|
6 |
Zhang Mingjie, Huang Lifeng, Ding Guoping, et al. Interferon gamma inhibits CXCL8-CXCR2 axis mediated tumor-associated macrophages tumor trafficking and enhances anti-PD1 efficacy in pancreatic cancer [J]. J Immunother Cancer, 2020, 8(1): e000308.
|
7 |
Li Enhao, Yang Xiaobao, Du Yuzhang, et al. CXCL8 associated dendritic cell activation marker expression and recruitment as indicators of favorable outcomes in colorectal cancer [J]. Front Immunol, 2021, 12: 667177.
|
8 |
Fan Yang, Liu Xue-Qi, He Jian-Zhong, et al. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4 [J]. J Cell Mol Med, 2022, 26(8): 2363-2376.
|
9 |
Bazzichetto Chiara, Milella Michele, Zampiva Ilaria, et al. Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro [J]. Biomedicines, 2022, 10(10): 2631.
|
10 |
Ina H Benoy, Salgado Roberto, Van Dam Peter, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival [J]. Clin Cancer Res, 2004, 10(21): 7157-7162.
|
11 |
Xi Yan, Han Lina, Zhao Riyang, et al. Prognosis value of IL-6, IL-8, and IL-1β in serum of patients with lung cancer: A fresh look at interleukins as a biomarker [J]. Heliyon, 2022, 8(8): e09953.
|
12 |
Zhou Jiebai, Lu Xinyuan, Zhu Haixing, et al. Resistance to immune checkpoint inhibitors in advanced lung cancer: Clinical characteristics, potential prognostic factors and next strategy [J]. Front Immunol, 2023, 14: 1089026.
|
13 |
Merz Valeria, Zecchetto Camilla, Santoro Raffaela, et al. Plasma IL8 is a biomarker for TAK1 activation and predicts resistance to nanoliposomal irinotecan in patients with gemcitabine-refractory pancreatic cancer [J]. Clin Cancer Res, 2020, 26(17): 4661-4669.
|
14 |
Öcal Osman, Schütte Kerstin, Kupčinskas Juozas, et al. Baseline Interleukin-6 and -8 predict response and survival in patients with advanced hepatocellular carcinoma treated with sorafenib monotherapy: an exploratory post hoc analysis of the SORAMIC trial [J]. J Cancer Res Clin Oncol, 2022, 148(2): 475-485.
|
15 |
Huang Zhengyuan, Li Zhaozhong, Chen Xianqiang, et al. Comparison between clinical utility of CXCL-8 and clinical practice tumor markers for colorectal cancer diagnosis [J]. Biomed Res Int, 2022, 2022: 1213968.
|
16 |
Rubie Claudia, Vilma Oliveira Frick, Pfeil Sandra, et al. Correlation of IL-8 with induction, progression and metastatic potential of colorectal cancer [J]. World J Gastroenterol, 2007, 13(37): 4996-5002.
|
17 |
Benoy IH, Salgado R, Van Dam P, et al. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival [J]. Clin Cancer Res, 2004, 10(21): 7157-7162.
|
18 |
Murali Mohan Sagar Balla, Patwardhan Sejal, Pooja Kamal Melwani, et al. Prognosis of metastasis based on age and serum analytes after follow-up of non-metastatic lung cancer patients [J]. Transl Oncol, 2021, 14(1): 100933.
|
19 |
Jo Hitomi, Yoshida Tatsuya, Horinouchi Hidehito, et al. Prognostic significance of cachexia in advanced non-small cell lung cancer patients treated with pembrolizumab [J]. Cancer Immunol Immunother, 2022, 71(2): 387-398.
|
20 |
Keskin Serkan, Ali Cevat Kutluk, Tas Faruk, et al. Prognostic and predictive role of angiogenic markers in non-small cell lung cancer [J]. Asian Pac J Cancer Prev, 2019, 20(3): 733-736.
|
21 |
Bejarano Leire, J C Jordāo Marta, Joyce Johanna A, et al. Therapeutic targeting of the tumor microenvironment [J]. Cancer Discov, 2021, 11(4): 933-959.
|
22 |
Turley Shannon J, Cremasco Viviana, Astarita Jillian L. Immunological hallmarks of stromal cells in the tumour microenvironment [J]. Nat Rev Immunol, 2015, 15(11): 669-682.
|
23 |
Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment [J]. Nat Rev Immunol, 2015, 15(11): 669-682.
|
24 |
Hegde Samarth, Leader Andrew M, Merad Miriam, et al. MDSC: Markers, development, states, and unaddressed complexity [J]. Review Immunity, 2021, 54(5): 875-884.
|
25 |
Wu Yuze, Ming Yi, Niu Mengke, et al. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy [J]. Mol Cancer, 2022, 21(1): 184.
|
26 |
Zhang Qianfei, Chi Ma, Yi Duan, et al. Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma [J]. Cancer Discov, 2021, 11(5): 1248-1267.
|
27 |
Tomela Katarzyna, Pietrzak Bernadeta, Galus Łukasz, et al. Myeloid-Derived Suppressor Cells (MDSC) in melanoma patients treated with Anti-PD-1 immunotherapy [J]. Cells, 2023, 12(5): 789.
|
28 |
Zhang H, Ye Y-L, Li M-X, et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer [J]. Oncogene, 2017, 36(15): 2095-2104.
|
29 |
Mao Fang-Yuan, Zhao Yong-Liang, Lv Yi-Pin, et al. CD45+CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8+ T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer [J]. Cell Death Dis, 2018, 9(7): 763.
|
30 |
Rao HL, Chen JW, Li M, et al. Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients' adverse prognosis [J]. PLoS One, 2012, 7(1): e30806.
|
31 |
Zippoli Mara, Ruocco Anna, Novelli Rubina, et al. The role of extracellular vesicles and interleukin-8 in regulating and mediating neutrophil-dependent cancer drug resistance [J]. Front Oncol, 2022, 12: 947183.
|
32 |
Yuan Cheng, Fei Mo, Li Qingfang, et al. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin [J]. Mol Cancer, 2021, 20(1): 62.
|
33 |
Fridlender Zvi G, Jing Sun, Kim Samuel, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN [J]. Cancer Cell, 2009, 16(3): 183-194.
|
34 |
Bordbari Sharareh, Mörchen Britta, Pylaeva Ekaterina, et al. SIRT1-mediated deacetylation of FOXO3a transcription factor supports pro-angiogenic activity of interferon-deficient tumor-associated neutrophils [J]. Int J Cancer, 2022, 150(7): 1198-1211.
|
35 |
Rodriguez Paulo C, Quiceno David G, Zabaleta Jovanny, et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses [J]. Cancer Res, 2004, 64(16): 5839-5849.
|
36 |
Yang Moran, Zhang Guodong, Wang Yiying, et al. Tumour-associated neutrophils orchestrate intratumoural IL-8-driven immune evasion through Jagged2 activation in ovarian cancer [J]. Br J Cancer, 2020, 123(9): 1404-1416.
|
37 |
Li Peishan, Ming Lu, Shi Jiayuan, et al. Dual roles of neutrophils in metastatic colonization are governed by the host NK cell status [J]. Nat Commun, 2020, 11(1): 4387.
|
38 |
Butin-Israeli Veronika, Bui Triet M, Wiesolek Hannah L, et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing [J]. J Clin Invest, 2019, 129(2): 712-726.
|
39 |
Shao CBo-Zong, Yi Yao, Li Jin-Ping, et al. The role of neutrophil extracellular traps in cancer [J]. Front Oncol, 2021, 11: 714357.
|
40 |
Carlos E de Andrea, María Carmen Ochoa, Villalba-Esparza María, et al. Heterogenous presence of neutrophil extracellular traps in human solid tumours is partially dependent on IL-8 [J]. J Pathol, 2021, 255(2): 190-201.
|
41 |
Fousert Esther, Toes René, Desai Jyaysi. Neutrophil extracellular traps (NETs) take the central stage in driving autoimmune responses [J]. Cells, 2020, 9(4): 915.
|
42 |
Yang Linbin, Qiang Liu, Zhang Xiaoqian, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25 [J]. Nature, 2020, 583(7814): 133-138.
|
43 |
Dickson Iain. NETs promote liver metastasis via CCDC25 [J]. Nat Rev Gastroenterol Hepatol, 2020, 17(8): 451.
|
44 |
Martins-Cardoso Karina, Almeida Vitor H, Bagri Kayo M, et al. Neutrophil Extracellular Traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial-mesenchymal transition [J]. Cancers (Basel), 2020, 12(6): 1542.
|
45 |
Albrengues Jean, Shields Mario A, Ng David, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice [J]. Science, 2018, 361(6409): eaao4227.
|
46 |
Teijeira Álvaro, Garasa Saray, Gato María, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity [J]. Immunity, 2020, 52(5): 856-871.e8.
|
47 |
Liu X, Wang Y, Bauer AT, et al. Neutrophils activated by membrane attack complexes increase the permeability of melanoma blood vessels [J]. Proc Natl Acad Sci USA, 2022, 119(33): e2122716119.
|
48 |
Yazdani HO, Roy E, Comerci AJ, et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth [J]. Cancer Res, 2019, 79(21): 5626-5639.
|
49 |
Väyrynen Juha P, Haruki Koichiro, Chan Lau Mai, et al. The prognostic role of macrophage polarization in the colorectal cancer microenvironment [J]. Cancer Immunol Res, 2021, 9(1): 8-19.
|
50 |
Casanova-Acebes María, Dalla Erica, Leader Andrew M, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells [J]. Nature, 2021, 595(7868): 578-584.
|
51 |
Nixon Briana G, Kuo Fengshen, Ji LiangLiang, et al. Tumor-associated macrophages expressing the transcription factor IRF8 promote T cell exhaustion in cancer [J]. Immunity, 2022, 55(11): 2044-2058.
|
52 |
Dallavalasa Siva, Beeraka Narasimha M, Basavaraju Chaithanya G, et al. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis - current status [J]. Curr Med Chem, 2021, 28(39): 8203-8236.
|
53 |
Shi Qingzhu, Shen Qicong, Liu Yanfang, et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance [J]. Cancer Cell, 2022, 40(10): 1207-1222.
|
54 |
Fang Weiyuan, Lei Ye, Shen Liyun, et al. Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8 [J]. Carcinogenesis, 2014, 35(8): 1780-1787.
|
55 |
Xiang Xiaonan, Wang Jianguo, Di Lu, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy [J]. Signal Transduct Target Ther, 2021, 6(1): 75.
|
56 |
Wang Qiwei, Bergholz Johann S, Ding Liya, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer [J]. Nat Commun, 2022, 13(1): 3022.
|
57 |
Nie Gang, Cao Xiangbo, Yan Mao, et al. Tumor-associated macrophages-mediated CXCL8 infiltration enhances breast cancer metastasis: Suppression by Danirixin [J]. Int Immunopharmacol, 2021, 95: 107153.
|
58 |
Masuya D, Huang C, Liu D, et al. The intratumoral expression of vascular endothelial growth factor and interleukin-8 associated with angiogenesis in nonsmall cell lung carcinoma patients [J]. Cancer, 2001, 92(10): 2628-2638.
|
59 |
Pei Xiao, Long Xinxin, Zhang Lijie, et al. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells [J]. Oncoimmunology, 2018, 7(7): e1440166.
|
60 |
Caio Luiz Bitencourt Reis, Taíssa Cássia de Souza Furtado, Wendes Dias Mendes, et al. Photobiomodulation impacts the levels of inflammatory mediators during orthodontic tooth movement? A systematic review with meta-analysis [J]. Lasers Med Sci, 2022, 37(2): 771-787.
|
61 |
Ning Yingxia, Cui Yinghong, Xiang Li, et al. Co-culture of ovarian cancer stem-like cells with macrophages induced SKOV3 cells stemness via IL-8/STAT3 signaling [J]. Biomed Pharmacother, 2018, 103: 262-271.
|
62 |
Chen Shao-Jie, Lian Guo-da, Li Jia-Jia, et al. Tumor-driven like macrophages induced by conditioned media from pancreatic ductal adenocarcinoma promote tumor metastasis via secreting IL-8 [J]. Cancer Med, 2018, 7(11): 5679-5690.
|
63 |
Jing Zhai, Shen Jiajia, Xie Guiping, et al. Cancer-associated fibroblasts-derived IL-8 mediates resistance to cisplatin in human gastric cancer [J]. Cancer Lett, 2019, 454: 37-43.
|
64 |
Dabkeviciene Daiva, Jonusiene Violeta, Zitkute Vilmante, et al. The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116 [J]. Med Oncol, 2015, 32(12): 258.
|
65 |
Imafuji Hiroyuki, Matsuo Yoichi, Ueda Goro, et al. Acquisition of gemcitabine resistance enhances angiogenesis via upregulation of IL-8 production in pancreatic cancer [J]. Oncol Rep, 2019, 41(6): 3508-3516.
|
66 |
Sootichote Rochanawan, Thuwajit Peti, Singsuksawat Ekapot, et al. Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8 [J]. BMC Cancer, 2018, 18(1): 231.
|
67 |
Kumar Abhishek, Cherukumilli Madhuri, Seyed Hamidreza Mahmoudpour, et al. ShRNA-mediated knock-down of CXCL8 inhibits tumor growth in colorectal liver metastasis [J]. Biochem Biophys Res Commun, 2018, 500(3): 731-737.
|
68 |
Dominguez Charli, McCampbell Kristen K, David Justin M, et al. Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer [J]. JCI Insight, 2017, 2(21): e94296.
|
69 |
Bilusic Marijo, Heery Christopher R, Collins Julie M, et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors [J]. J Immunother Cancer, 2019, 7(1): 240.
|
70 |
Huang Suyun, Mills Lisa, Mian Badar, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma [J]. Am J Pathol, 2002, 161(1): 125-134
|
71 |
Mian Badar M, P N Dinney Colin, Bermejo Carlos E, et al. Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB [J]. Clin Cancer Res, 2003, 9(8): 3167-3175.
|
72 |
Wu Kongming, Katiyar Sanjay, Li Anping, et al. Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8 [J]. Proc Natl Acad Sci U S A, 2008, 105(19): 6924-6929.
|
73 |
Ke Chen, Wu Kongming, Jiao Xuanmao, et al. The endogenous cell-fate factor dachshund restrains prostate epithelial cell migration via repression of cytokine secretion via a cxcl signaling module [J]. Cancer Res, 2015, 75(10): 1992-2004.
|
74 |
Lillian Sun, Paul E Clavijo, Yvette Robbins, et al, Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy [J]. JCI Insight, 2019, 4(7): e126853.
|
75 |
Greene Sarah, Robbins Yvette, Mydlarz Wojciech K, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-Cell immunotherapy in head and neck cancer models [J]. Clin Cancer Res, 2020, 26(6): 1420-1431.
|
76 |
Kargl Julia, Zhu Xiaodong, Zhang Huajia, et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC [J]. JCI Insight, 2019, 4(24): e130850.
|
77 |
Yang Jinming, Chi Yan, Vilgelm Anna E, et al. Targeted deletion of CXCR2 in myeloid cells alters the tumor immune environment to improve antitumor immunity [J]. Cancer Immunol Res, 2021, 9(2): 200-213.
|
78 |
Bertini Riccardo, Allegretti Marcello, Bizzarri Cinzia, et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury [J]. Proc Natl Acad Sci U S A, 2004, 101(32): 11791-11796.
|
79 |
Casilli Federica, Bianchini Andrea, Gloaguen Isabelle, et al. Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2 [J]. Biochem Pharmacol, 2005, 69(3): 385-394.
|
80 |
Ginestier Christophe, Liu Suling, Diebel Mark E, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts [J]. J Clin Invest, 2010, 120(2): 485-497.
|
81 |
Fousek Kristen, Horn Lucas A, Palena Claudia, et al. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression [J]. Pharmacol Ther, 2021, 219: 107692.
|
82 |
Goldstein Lori J, Mansutti Mauro, Levy Christelle, et al. A randomized, placebo-controlled phase 2 study of paclitaxel in combination with reparixin compared to paclitaxel alone as front-line therapy for metastatic triple-negative breast cancer (fRida) [J]. Breast Cancer Res Treat, 2021, 190(2): 265-275.
|
83 |
Nicholls David J, Wiley Katherine, Dainty Ian, et al. Pharmacological characterization of AZD5069, a slowly reversible CXC chemokine receptor 2 antagonist [J]. J Pharmacol Exp Ther, 2015, 353(2): 340-350.
|
84 |
Diletta Di Mitri, Mirenda Michela, Vasilevska Jelena, et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence and tumor inhibition in advanced prostate cancer [J]. Cell Rep, 2019, 28(8): 2156-2168.e5.
|
85 |
Gonsiorek Waldemar, Fan Xuedong, Hesk David, et al. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist [J]. J Pharmacol Exp Ther, 2007, 322(2): 477-485.
|
86 |
Planagumà A, Domènech T, Pont M, et al. Combined anti CXC receptors 1 and 2 therapy is a promising anti-inflammatory treatment for respiratory diseases by reducing neutrophil migration and activation [J]. Pulm Pharmacol Ther, 2015, 34: 37-45.
|
87 |
Singh Seema, Sadanandam Anguraj, Nannuru Kalyan C, et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis [J]. Clin Cancer Res, 2009, 15(7): 2380-2386.
|
88 |
Fu Shengling, Lin Jiayuh. Blocking interleukin-6 and interleukin-8 signaling inhibits cell viability, colony-forming activity, and cell migration in human triple-negative breast cancer and pancreatic cancer cells [J]. Anticancer Res, 2018, 38(11): 6271-6279.
|
89 |
Yan Ning, Labonte Melissa J, Wu Zhang, et al. The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models [J]. Mol Cancer Ther, 2012, 11(6): 1353-1364.
|
90 |
Varney Michelle L, Singh Seema, Li Aihua, et al. Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases [J]. Cancer Lett, 2011, 300(2): 180-188.
|
91 |
Busch-Petersen Jakob, Carpenter Donald C, Burman Miriam, et al. Danirixin: A reversible and selective antagonist of the CXC chemokine receptor 2 [J]. J Pharmacol Exp Ther, 2017, 362(2): 338-346.
|
92 |
White J R, Lee J M, Young P R, et al. Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration [J]. J Biol Chem, 1998, 273(17): 10095-10098.
|
93 |
Kim Sangmin, You Daeun, Jeong Yisun, et al. WNT5A augments cell invasiveness by inducing CXCL8 in HER2-positive breast cancer cells [J]. Cytokine, 2020, 135: 155213.
|
94 |
Yung Mingo Ming-Ho, Wai-Man Tang Hermit, Chun-Hui Cai Patty, et al. GRO-α and IL-8 enhance ovarian cancer metastatic potential via the CXCR2-mediated TAK1/NFκB signaling cascade [J]. Theranostics, 2018, 8(5): 1270-1285.
|
95 |
Cheng Jingying, Ying Li, Liu Shiqi, et al. CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway [J]. FASEB J, 2019, 33(4): 4755-4764.
|
96 |
Liu Xiaobei, Lan Tianxia, Fei Mo, et al. Antitumor and radiosensitization effects of a CXCR2 inhibitor in nasopharyngeal carcinoma [J]. Front Cell Dev Biol, 2021, 9: 689613.
|
97 |
Singh Jagdeep K, Farnie Gillian, Bundred Nigel J, et al. Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms [J]. Clin Cancer Res, 2013, 19(3): 643-656.
|
98 |
Xin Liu, Jing Peng, Sun Wenchang, et al. G31P, an antagonist against CXC chemokine receptors 1 and 2, inhibits growth of human prostate cancer cells in nude mice [J]. Tohoku J Exp Med, 2012, 228(2): 147-156.
|
99 |
Sanmamed M F, Perez-Gracia J L, Schalper K A, et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients [J]. Ann Oncol, 2017, 28(8): 1988-1995.
|
100 |
Yuen Kobe C, Liu Li-Fen, Gupta Vinita, et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade [J]. Nat Med, 2020, 26(5): 693-698
|
101 |
Schalper Kurt A, Carleton Michael, Ming Zhou, et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors [J]. Nat Med, 2020, 26(5): 688-692.
|
102 |
Horn Lucas A, Riskin Jeffrey, Hempel Heidi A, et al. Simultaneous inhibition of CXCR1/2, TGF-β, and PD-L1 remodels the tumor and its microenvironment to drive antitumor immunity [J]. J Immunother Cancer, 2020, 8(1): e000326.
|
103 |
Najjar Yana G, Rayman Patricia, Jia Xuefei, et al. Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with intratumoral expression of IL1β, IL8, CXCL5, and mip-1α [J]. Clin Cancer Res, 2017, 23(9): 2346-2355.
|