切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (11) : 1202 -1205. doi: 10.3877/cma.j.issn.1674-0785.2023.11.011

综述

神经酰胺与心脏和血管疾病关系的研究进展
张洪, 王宏宇()   
  1. 830054 新疆乌鲁木齐,新疆医科大学第二临床医学院
    100144 北京,北京大学首钢医院血管医学中心
  • 收稿日期:2023-01-12 出版日期:2023-11-15
  • 通信作者: 王宏宇
  • 基金资助:
    2019年度临床重点项目建设项目(2019-Yuan-LC-01); 2020年首都卫生发作科研专项(自主创新)(首发2020-2-6042); 北京市石景山区血管医学重点专科项目(2020-2023)

Progress in understanding of relationship between ceramide and cardiovascular disease

Hong Zhang, Hongyu Wang()   

  1. Second Clinical School of Medicine, Xinjiang Medical University, Urumqi 830054, China
    Center for Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
  • Received:2023-01-12 Published:2023-11-15
  • Corresponding author: Hongyu Wang
引用本文:

张洪, 王宏宇. 神经酰胺与心脏和血管疾病关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1202-1205.

Hong Zhang, Hongyu Wang. Progress in understanding of relationship between ceramide and cardiovascular disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(11): 1202-1205.

心脏和血管疾病(cardiovascular disease,CVD)是威胁人类身体健康和生命安全的主要疾病。神经酰胺作为一种简单的生物活性脂质,是在糖尿病、心脏和血管疾病起致病作用的鞘脂,神经酰胺已被证明在患有心脏和血管疾病个体的许多组织中积累,包括血管系统和心脏。研究表明,神经酰胺与多种心脏和血管疾病的关系密切且互相影响,参与了心脏和血管病的发生和发展,尤其对高血压、冠状动脉粥样硬化型心脏病和心力衰竭预后风险具有重要预测价值。未来需要进一步研究证实降低神经酰胺水平和神经酰胺合成途径中的反应酶是否可减轻心脏和血管疾病的严重程度及其严重后果的发生风险。

Cardiovascular disease (CVD) is a major category of diseases threatening human health and life. Ceramide is a simple bioactive sphingolipid that plays a role in the pathogenesis of diabetes and CVD. Ceramide has been shown to accumulate in many tissues of individuals with CVD, including the vascular system and the heart. In recent years, more and more studies have shown that ceramide is closely related to a variety of CVDs. Ceramide is involved in the occurrence and development of CVD, and has predictive value especially for hypertension, coronary atherosclerotic heart disease, and heart failure. Future studies are needed to confirm whether reducing ceramide levels and the reactive enzymes involved in ceramide synthesis pathways can reduce the severity and risk of serious outcomes in CVD.

1
Summers SA, Chaurasia B, Holland WL. Metabolic messengers: ceramides [J]. Nat Metab, 2019, 1(11): 1051-1058.
2
Rivera IG, Ordoñez M, Presa N, et al. Sphingomyelinase D/ceramide 1-phosphate in cell survival and inflammation [J]. Toxins (Basel), 2015, 7(5): 1457-1466.
3
Chang KT, Anishkin A, Patwardhan GA, et al. Ceramide channels: destabilization by Bcl-xL and role in apoptosis [J]. Biochim Biophys Acta, 2015, 1848(10 Pt A): 2374-2384.
4
Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease [J]. J Lipid Res, 2019, 60(5): 913-918.
5
Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: A meta-analysis of longitudinal studies [J]. J Clin Lipidol, 2020, 14(2): 176-185.
6
Alexaki A, Clarke BA, Gavrilova O, et al. De Novo sphingolipid biosynthesis is required for adipocyte survival and metabolic homeostasis [J]. J Biol Chem, 2017, 292(9): 3929-3939.
7
Peters L, Kuebler WM, Simmons S. Sphingolipids in atherosclerosis: Chimeras in structure and function [J]. Int J Mol Sci, 2022, 23(19): 11948.
8
Hadas Y, Vincek AS, Youssef E, et al. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction [J]. Circulation, 2020, 141(11): 916-930.
9
Ouro A, Correa-Paz C, Maqueda E, et al. Involvement of ceramide metabolism in cerebral ischemia [J]. Front Mol Biosci, 2022, 9: 864618.
10
Poss AM, Maschek JA, Cox JE, et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease [J]. J Clin Invest, 2020, 130(3): 1363-1376.
11
Kikas P, Chalikias G, Tziakas D. Cardiovascular implications of sphingomyelin presence in biological membranes [J]. Eur Cardiol, 2018, 13(1): 42-45.
12
Laaksonen R, Ekroos K, Sysi-Aho M, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol [J]. Eur Heart J, 2016, 37(25): 1967-1976.
13
Havulinna AS, Sysi-Aho M, Hilvo M, et al. Circulating ceramides predict cardiovascular outcomes in the population-based Finrisk 2002 cohort [J]. Arterioscler Thromb Vasc Biol, 2016, 36(12): 2424-2430.
14
Peterson LR, Xanthakis V, Duncan MS, et al. Ceramide remodeling and risk of cardiovascular events and mortality [J]. J Am Heart Assoc, 2018, 7(10): e007931.
15
Timmerman N, Waissi F, Dekker M, et al. Ceramides and phospholipids in plasma extracellular vesicles are associated with high risk of major cardiovascular events after carotid endarterectomy [J]. Sci Rep, 2022, 12(1): 5521.
16
Summers SA. Editorial: The role of ceramides in diabetes and cardiovascular disease [J]. Front Endocrinol (Lausanne), 2021, 12: 667885.
17
Wang DD, Toledo E, Hruby A, et al. Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the predimed trial (prevención con dieta mediterránea) [J]. Circulation, 2017, 135(21): 2028-2040.
18
Mohamud Yusuf A, Hagemann N, Hermann DM. The acid sphingomyelinase/ceramide system as target for ischemic stroke therapies [J]. Neurosignals, 2019, 27(S1): 32-43.
19
Peters L, Kuebler WM, Simmons S. Sphingolipids in atherosclerosis: Chimeras in structure and function [J]. Int J Mol Sci, 2022, 23(19): 11948.
20
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, et al. Sphingolipid metabolism and signaling in cardiovascular diseases [J]. Front Cardiovasc Med, 2022, 9: 915961.
21
Cheng JM, Suoniemi M, Kardys I, et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study [J]. Atherosclerosis, 2015, 243(2): 560-566.
22
You Q, Peng Q, Yu Z, et al. Plasma lipidomic analysis of sphingolipids in patients with large artery atherosclerosis cerebrovascular disease and cerebral small vessel disease [J]. Biosci Rep, 2020, 40(9): BSR20201519.
23
Spijkers LJ, van den Akker RF, Janssen BJ, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide [J]. PLoS One, 2011, 6(7): e21817.
24
Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries [J]. Am J Physiol Heart Circ Physiol, 2003, 284(2): H605-H612.
25
Li H, Junk P, Huwiler A, et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase [J]. Circulation, 2002, 106(17): 2250-2256.
26
Cogolludo A, Villamor E, Perez-Vizcaino F, et al. Ceramide and regulation of vascular tone [J]. Int J Mol Sci, 2019, 20(2): 411.
27
Fenger M, Linneberg A, Jørgensen T, et al. Genetics of the ceramide/sphingosine-1-phosphate rheostat in blood pressure regulation and hypertension [J]. BMC Genet, 2011, 12: 44.
28
Yin W, Li F, Tan X, et al. Plasma ceramides and cardiovascular events in hypertensive patients at high cardiovascular risk [J]. Am J Hypertens, 2021, 34(11): 1209-1216.
29
Ji R, Akashi H, Drosatos K, et al. Increased de novo ceramide synthesis and accumulation in failing myocardium [J]. JCI Insight, 2017, 2(14): e96203.
30
Basu R, Oudit GY, Wang X, et al. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function [J]. Am J Physiol Heart Circ Physiol, 2009, 297(6): H2096-H2108.
31
Shu H, Peng Y, Hang W, et al. Emerging roles of ceramide in cardiovascular diseases [J]. Aging Dis, 2022, 13(1): 232-245.
32
Hoffman M, Palioura D, Kyriazis ID, et al. Cardiomyocyte Krüppel-Like factor 5 promotes De Novo ceramide biosynthesis and contributes to eccentric remodeling in ischemic cardiomyopathy [J]. Circulation, 2021, 143(11): 1139-1156.
33
Reforgiato MR, Milano G, Fabriàs G, et al. Inhibition of ceramide de novo synthesis as a postischemic strategy to reduce myocardial reperfusion injury [J]. Basic Res Cardiol, 2016, 111(2): 12.
34
Jeffrey W, Meeusen, Leslie J, et al. Plasma ceramides [J]. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1933-1939.
35
Butler TJ, Ashford D, Seymour AM. Western diet increases cardiac ceramide content in healthy and hypertrophied hearts [J]. Nutr Metab Cardiovasc Dis, 2017, 27(11): 991-998.
36
张鹏, 陈夏欢, 王昊, 等. 神经酰胺在心血管疾病预测价值中的研究进展 [J]. 中国心血管杂志, 2020, 25(2): 189-192.
37
刘潇, 王雷. 神经酰胺与心血管疾病关系的研究进展 [J]. 临床和实验医学杂志, 2020, 19(15): 1668-1671.
38
Choi RH, Tatum SM, Symons JD, et al. Ceramides and other sphingolipids as drivers of cardiovascular disease [J]. Nat Rev Cardiol, 2021, 18(10): 701-711.
39
Zietzer A, Düsing P, Reese L, et al. Ceramide metabolism in ccardiovascular disease: a network with high therapeutic potential [J]. Arterioscler Thromb Vasc Biol, 2022, 42(10): 1220-1228.
40
Choi RH, Tatum SM, Symons JD, et al. Ceramides and other sphingolipids as drivers of cardiovascular disease [J]. Nat Rev Cardiol, 2021, 18(10): 701-711.
41
王宏宇, 刘欢. 推动心脏和血管健康规范化综合评估, 增强全民血管健康意识—《中国血管健康评估系统应用指南(2018第三次报告)》解读 [J]. 中华医学杂志, 2018, 98(37): 2953-2954.
42
Wen F, Liu Y, Wang H. Clinical evaluation tool for vascular health-endothelial function and cardiovascular disease management [J]. Cells, 2022, 11(21): 3363.
43
王宏宇, 陈新. 依托信息化的全生命周期血管健康管理与心血管疾病社区防治策略 [J]. 中国医师杂志, 2020, 22(9): 1281-1284.
44
王宏宇. 应重视北京血管健康分级法在智慧化数字心脏和血管健康医学模式实践中的作用 [J]. 中华医学杂志, 2023, 103(2): 6-11.
45
王宏宇. 推广血管健康理念, 促进血管医学专业发展 [J]. 中国循环杂志, 2018, 33(10): 1026-1028.
46
中国医药教育协会血管医学专业委员会. 中国非传统血管健康危险因素管理策略专家共识(2022第一次报告) [J]. 中华医学杂志, 2023, 103(4): 242-258.
47
蒋姗彤, 王宏宇. 基于北京血管健康分级指导的智能化全生命周期心脏和血管健康管理[J/OL]. 中华临床医师杂志(电子版), 2019, 13(11): 868-871.
48
王宏宇. 血管衰老临床检测技术—重视血管内皮功能的评价与 EndoFIND 研究启示 [J]. 中国心血管杂志, 2021, 26(5): 418-424
49
Liu H, Xie G, Huang W, et al. Rationale and design of a multicenter, randomized, patients-blinded two-stage clinical trial on effects of endothelial function test in patients with non-obstructive coronary artery disease (ENDOFIND) [J]. Int J Cardiol, 2021, 325: 16-22.
[1] 李颖, 潘绍卿, 丁明岩, 孙丹丹, 曲海波, 侯培培, 朱芳. 实时三维超声心动图对高度房室传导阻滞伴射血分数保留的心力衰竭患者左束支区域起搏后左心室功能及同步性的评价[J]. 中华医学超声杂志(电子版), 2023, 20(04): 430-436.
[2] 卢凯, 王香云. 急性心肌梗死后心力衰竭患者血清微小RNA-200a表达及临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 488-491.
[3] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[4] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[5] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[6] 陈婷, 许承琼, 何绍玲. 依诺肝素治疗高血压脑出血并肺栓塞的疗效和安全性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 679-681.
[7] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[8] 许语阳, 吕云福, 王葆春. 乙肝后肝硬化门静脉高压症脾肿大外科治疗进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 469-473.
[9] 胡欣欣, 孟晓凡, 郭兆安. 高血压肾病的发病机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(06): 339-343.
[10] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[11] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[12] 刘微, 张敏, 解美灵, 喻群群, 周娜, 陈光平, 杨祥, 陈亚丽, 刘梅花. 医院-社区一体化模式在高血压患者管理中的应用效果研究[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1176-1180.
[13] 王亮, 王君, 吕雪白, 袁玉婷, 刘小慧, 张文超. 抗β1肾上腺素受体自身抗体在高血压并左室舒张功能不全中的临床研究[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1040-1044.
[14] 刘燕燕, 曾万江. 妊娠合并嗜铬细胞瘤的诊治[J]. 中华产科急救电子杂志, 2023, 12(04): 228-231.
[15] 巩江华, 李凝香, 李坚, 李枫, 童莉, 邢宏利, 何新霞. 探讨原发性高血压伴失眠患者血清NPY、5-HT、BDNF水平变化及其临床意义[J]. 中华脑血管病杂志(电子版), 2023, 17(06): 582-590.
阅读次数
全文


摘要