1 |
Summers SA, Chaurasia B, Holland WL. Metabolic messengers: ceramides [J]. Nat Metab, 2019, 1(11): 1051-1058.
|
2 |
Rivera IG, Ordoñez M, Presa N, et al. Sphingomyelinase D/ceramide 1-phosphate in cell survival and inflammation [J]. Toxins (Basel), 2015, 7(5): 1457-1466.
|
3 |
Chang KT, Anishkin A, Patwardhan GA, et al. Ceramide channels: destabilization by Bcl-xL and role in apoptosis [J]. Biochim Biophys Acta, 2015, 1848(10 Pt A): 2374-2384.
|
4 |
Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease [J]. J Lipid Res, 2019, 60(5): 913-918.
|
5 |
Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: A meta-analysis of longitudinal studies [J]. J Clin Lipidol, 2020, 14(2): 176-185.
|
6 |
Alexaki A, Clarke BA, Gavrilova O, et al. De Novo sphingolipid biosynthesis is required for adipocyte survival and metabolic homeostasis [J]. J Biol Chem, 2017, 292(9): 3929-3939.
|
7 |
Peters L, Kuebler WM, Simmons S. Sphingolipids in atherosclerosis: Chimeras in structure and function [J]. Int J Mol Sci, 2022, 23(19): 11948.
|
8 |
Hadas Y, Vincek AS, Youssef E, et al. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction [J]. Circulation, 2020, 141(11): 916-930.
|
9 |
Ouro A, Correa-Paz C, Maqueda E, et al. Involvement of ceramide metabolism in cerebral ischemia [J]. Front Mol Biosci, 2022, 9: 864618.
|
10 |
Poss AM, Maschek JA, Cox JE, et al. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease [J]. J Clin Invest, 2020, 130(3): 1363-1376.
|
11 |
Kikas P, Chalikias G, Tziakas D. Cardiovascular implications of sphingomyelin presence in biological membranes [J]. Eur Cardiol, 2018, 13(1): 42-45.
|
12 |
Laaksonen R, Ekroos K, Sysi-Aho M, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol [J]. Eur Heart J, 2016, 37(25): 1967-1976.
|
13 |
Havulinna AS, Sysi-Aho M, Hilvo M, et al. Circulating ceramides predict cardiovascular outcomes in the population-based Finrisk 2002 cohort [J]. Arterioscler Thromb Vasc Biol, 2016, 36(12): 2424-2430.
|
14 |
Peterson LR, Xanthakis V, Duncan MS, et al. Ceramide remodeling and risk of cardiovascular events and mortality [J]. J Am Heart Assoc, 2018, 7(10): e007931.
|
15 |
Timmerman N, Waissi F, Dekker M, et al. Ceramides and phospholipids in plasma extracellular vesicles are associated with high risk of major cardiovascular events after carotid endarterectomy [J]. Sci Rep, 2022, 12(1): 5521.
|
16 |
Summers SA. Editorial: The role of ceramides in diabetes and cardiovascular disease [J]. Front Endocrinol (Lausanne), 2021, 12: 667885.
|
17 |
Wang DD, Toledo E, Hruby A, et al. Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the predimed trial (prevención con dieta mediterránea) [J]. Circulation, 2017, 135(21): 2028-2040.
|
18 |
Mohamud Yusuf A, Hagemann N, Hermann DM. The acid sphingomyelinase/ceramide system as target for ischemic stroke therapies [J]. Neurosignals, 2019, 27(S1): 32-43.
|
19 |
Peters L, Kuebler WM, Simmons S. Sphingolipids in atherosclerosis: Chimeras in structure and function [J]. Int J Mol Sci, 2022, 23(19): 11948.
|
20 |
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, et al. Sphingolipid metabolism and signaling in cardiovascular diseases [J]. Front Cardiovasc Med, 2022, 9: 915961.
|
21 |
Cheng JM, Suoniemi M, Kardys I, et al. Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study [J]. Atherosclerosis, 2015, 243(2): 560-566.
|
22 |
You Q, Peng Q, Yu Z, et al. Plasma lipidomic analysis of sphingolipids in patients with large artery atherosclerosis cerebrovascular disease and cerebral small vessel disease [J]. Biosci Rep, 2020, 40(9): BSR20201519.
|
23 |
Spijkers LJ, van den Akker RF, Janssen BJ, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide [J]. PLoS One, 2011, 6(7): e21817.
|
24 |
Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries [J]. Am J Physiol Heart Circ Physiol, 2003, 284(2): H605-H612.
|
25 |
Li H, Junk P, Huwiler A, et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase [J]. Circulation, 2002, 106(17): 2250-2256.
|
26 |
Cogolludo A, Villamor E, Perez-Vizcaino F, et al. Ceramide and regulation of vascular tone [J]. Int J Mol Sci, 2019, 20(2): 411.
|
27 |
Fenger M, Linneberg A, Jørgensen T, et al. Genetics of the ceramide/sphingosine-1-phosphate rheostat in blood pressure regulation and hypertension [J]. BMC Genet, 2011, 12: 44.
|
28 |
Yin W, Li F, Tan X, et al. Plasma ceramides and cardiovascular events in hypertensive patients at high cardiovascular risk [J]. Am J Hypertens, 2021, 34(11): 1209-1216.
|
29 |
Ji R, Akashi H, Drosatos K, et al. Increased de novo ceramide synthesis and accumulation in failing myocardium [J]. JCI Insight, 2017, 2(14): e96203.
|
30 |
Basu R, Oudit GY, Wang X, et al. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function [J]. Am J Physiol Heart Circ Physiol, 2009, 297(6): H2096-H2108.
|
31 |
Shu H, Peng Y, Hang W, et al. Emerging roles of ceramide in cardiovascular diseases [J]. Aging Dis, 2022, 13(1): 232-245.
|
32 |
Hoffman M, Palioura D, Kyriazis ID, et al. Cardiomyocyte Krüppel-Like factor 5 promotes De Novo ceramide biosynthesis and contributes to eccentric remodeling in ischemic cardiomyopathy [J]. Circulation, 2021, 143(11): 1139-1156.
|
33 |
Reforgiato MR, Milano G, Fabriàs G, et al. Inhibition of ceramide de novo synthesis as a postischemic strategy to reduce myocardial reperfusion injury [J]. Basic Res Cardiol, 2016, 111(2): 12.
|
34 |
Jeffrey W, Meeusen, Leslie J, et al. Plasma ceramides [J]. Arterioscler Thromb Vasc Biol, 2018, 38(8): 1933-1939.
|
35 |
Butler TJ, Ashford D, Seymour AM. Western diet increases cardiac ceramide content in healthy and hypertrophied hearts [J]. Nutr Metab Cardiovasc Dis, 2017, 27(11): 991-998.
|
36 |
张鹏, 陈夏欢, 王昊, 等. 神经酰胺在心血管疾病预测价值中的研究进展 [J]. 中国心血管杂志, 2020, 25(2): 189-192.
|
37 |
刘潇, 王雷. 神经酰胺与心血管疾病关系的研究进展 [J]. 临床和实验医学杂志, 2020, 19(15): 1668-1671.
|
38 |
Choi RH, Tatum SM, Symons JD, et al. Ceramides and other sphingolipids as drivers of cardiovascular disease [J]. Nat Rev Cardiol, 2021, 18(10): 701-711.
|
39 |
Zietzer A, Düsing P, Reese L, et al. Ceramide metabolism in ccardiovascular disease: a network with high therapeutic potential [J]. Arterioscler Thromb Vasc Biol, 2022, 42(10): 1220-1228.
|
40 |
Choi RH, Tatum SM, Symons JD, et al. Ceramides and other sphingolipids as drivers of cardiovascular disease [J]. Nat Rev Cardiol, 2021, 18(10): 701-711.
|
41 |
王宏宇, 刘欢. 推动心脏和血管健康规范化综合评估, 增强全民血管健康意识—《中国血管健康评估系统应用指南(2018第三次报告)》解读 [J]. 中华医学杂志, 2018, 98(37): 2953-2954.
|
42 |
Wen F, Liu Y, Wang H. Clinical evaluation tool for vascular health-endothelial function and cardiovascular disease management [J]. Cells, 2022, 11(21): 3363.
|
43 |
王宏宇, 陈新. 依托信息化的全生命周期血管健康管理与心血管疾病社区防治策略 [J]. 中国医师杂志, 2020, 22(9): 1281-1284.
|
44 |
王宏宇. 应重视北京血管健康分级法在智慧化数字心脏和血管健康医学模式实践中的作用 [J]. 中华医学杂志, 2023, 103(2): 6-11.
|
45 |
王宏宇. 推广血管健康理念, 促进血管医学专业发展 [J]. 中国循环杂志, 2018, 33(10): 1026-1028.
|
46 |
中国医药教育协会血管医学专业委员会. 中国非传统血管健康危险因素管理策略专家共识(2022第一次报告) [J]. 中华医学杂志, 2023, 103(4): 242-258.
|
47 |
蒋姗彤, 王宏宇. 基于北京血管健康分级指导的智能化全生命周期心脏和血管健康管理[J/OL]. 中华临床医师杂志(电子版), 2019, 13(11): 868-871.
|
48 |
王宏宇. 血管衰老临床检测技术—重视血管内皮功能的评价与 EndoFIND 研究启示 [J]. 中国心血管杂志, 2021, 26(5): 418-424
|
49 |
Liu H, Xie G, Huang W, et al. Rationale and design of a multicenter, randomized, patients-blinded two-stage clinical trial on effects of endothelial function test in patients with non-obstructive coronary artery disease (ENDOFIND) [J]. Int J Cardiol, 2021, 325: 16-22.
|