切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 72 -78. doi: 10.3877/cma.j.issn.1674-0785.2024.01.011

基础研究

间充质干细胞微泡对ARDS肺纤维化影响的实验研究
王吉1, 张颖2, 顾雪2, 杨朋磊2, 陈齐红2,()   
  1. 1. 225200 江苏 扬州,扬州大学医学院
    2. 225200 江苏 扬州,扬州大学附属江都人民医院重症医学科
  • 收稿日期:2023-10-12 出版日期:2024-01-15
  • 通信作者: 陈齐红
  • 基金资助:
    江苏省卫生健康委科研项目(Z2022008); 扬州市科技计划项目(YZ2021094); 国家自然科学基金(81670065)

Effect of mesenchymal stem cell microbubbles on pulmonary fibrosis in mice with acute respiratory distress syndrome: an experimental study

Ji Wang1, Ying Zhang2, Xue Gu2, Penglei Yang2, Qihong Chen2,()   

  1. 1. Medical School of Yangzhou University, Yangzhou 225200, China
    2. Department of Critical Care Medicine, Jiangdu People's Hospital Affiliated to Yangzhou University, Yangzhou 225200, China
  • Received:2023-10-12 Published:2024-01-15
  • Corresponding author: Qihong Chen
引用本文:

王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.

Ji Wang, Ying Zhang, Xue Gu, Penglei Yang, Qihong Chen. Effect of mesenchymal stem cell microbubbles on pulmonary fibrosis in mice with acute respiratory distress syndrome: an experimental study[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(01): 72-78.

目的

明确间充质干细胞微泡(MSC-MVs)对急性呼吸窘迫综合征(ARDS)肺纤维化小鼠肺纤维化的影响。

方法

采用慢病毒转染技术获取肝细胞生长因子(HGF)低表达的MSC-MVs(siHGF-MSC-MVs);三次注射脂多糖(LPS)法建立ARDS肺纤维化小鼠模型,然后从ARDS肺纤维化小鼠尾静脉注入MSC-MVs或siHGF-MSC-MVs。使用免疫组织化学、western blot、ELISA等方法检测肺纤维化相关蛋白表达,比较MSC-MVs对ARDS肺纤维化小鼠肺纤维化及纤维化相关指标的影响。

结果

ARDS肺纤维化组肺纤维化评分明显高于对照组,MSC-MVs注入肺纤维化小鼠尾静脉后,肺纤维化评分明显降低,然而siHGF-MSC-MVs组肺纤维化评分明显高于MSC-MVs组。与肺纤维化组比较,MSC-MVs组Ⅰ型、Ⅲ型胶原蛋白抗原、TGF-β、α-SMA蛋白表达量明显降低,而siHGF-MSC-MVs组较MSC-MVs组显著增加。ARDS肺纤维化组肺湿/干和Evans蓝漏出量高于对照组,MSC-MVs注射后湿/干和Evans蓝漏出量明显降低,然而,HGF低表达后MSC-MVs的作用被明显抑制。

结论

MSC-MVs部分通过分泌HGF抑制ARDS肺纤维化小鼠肺纤维化。

Objective

To investigate the effect of mesenchymal stem cell microvesicles (MSC-MVs) on pulmonary fibrosis in mice with acute respiratory distress syndrome (ARDS).

Methods

MSC-MVs with low expression of hepatocyte growth factor (siHGF-MSC-MVs) were obtained by lentivirus transfection. A mouse model of ARDS pulmonary fibrosis was established by injecting lipopolysaccharide (LPS) three times, and then MSC-MVs or siHGF-MSC-MVs were injected from the tail vein of ARDS mice with pulmonary fibrosis. Immunohistochemistry, Western blot, ELISA, and other methods were used to detect the expression of pulmonary fibrosis related proteins, and to compare the effects of MSC-MVs on pulmonary fibrosis and fibrosis related indicators in ARDS mice with pulmonary fibrosis.

Results

The pulmonary fibrosis score in the pulmonary fibrosis group was significantly higher than that of the control group. After MSC-MVs were injected into the tail vein of pulmonary fibrosis mice, the pulmonary fibrosis score was significantly reduced. However, the siHGF-MSC-MVs group had a significantly higher pulmonary fibrosis score than the MSC-MVs group. Compared with the pulmonary fibrosis group, the expression levels of type Ⅰ and Ⅲ collagen antigens, TGF-β, α-SMA protein were significantly reduced in the MSC-MVs group, while these indicators significantly increased in the siHGF-MSC-MVs group compared to the MSC-MVs group. The amount of lung wet/dry and Evans blue leakage in the ARDS pulmonary fibrosis group was higher than that in the control group. After MSC-MVs injection, the wet/dry weight ratio and the amount of Evans blue leakage was significantly reduced. However, the effect of MSC-MVs was significantly inhibited after HGF knockdown.

Conclusion

MSC-MVs inhibit pulmonary fibrosis in ARDS mice partly by secreting HGF.

图1 MSC-MVs对ARDS肺纤维化肺损伤的影响。图a为各组肺组织病理切片Masson染色;图b为各组肺损伤评分。与对照组比较,*P<0.05;与肺纤维化比较,#P<0.05;与MSC-MVs组比较,&P<0.05
图2 免疫组化检测MSC-MVs对ARDS肺纤维化小鼠肺纤维化相关指标的影响。图a为各组肺组织病理切片免疫组织化学图片;图b为α-SMA蛋白表达量;图c为Ⅰ型胶原蛋白表达量;图d为Ⅲ型胶原蛋白表达量;图e为TGF-β蛋白表达量。与对照组比较,*P<0.05;与肺纤维化比较,#P<0.05;与MSC-MVs组比较,&P<0.05
图3 Western Blot检测MSC-MVs对ARDS肺纤维化小鼠肺纤维化相关蛋白的影响。图a为各组肺组织纤维化相关蛋白的western blot条带图;图b为各纤维化相关蛋白相对表达量。与对照组比较,*P<0.05;与肺纤维化比较,#P<0.05;与MSC-MVs组比较,&P<0.05
图4 MSC-MVs对ARDS肺纤维化小鼠肺血管内皮通透性的影响。图a为各组肺湿干重比;图b为Evans蓝检测各组血管内皮通透性。与对照组比较,*P<0.05;与肺纤维化比较,#P<0.05;与MSC-MVs组比较,&P<0.05
1
Liu H, Shi Q, Tang L, et al. Apelin-13 ameliorates lps-Induced endothelial-to-mesenchymal transition and post-acute lung injury pulmonary fibrosis by suppressing transforming growth factor-Β1 signaling[J]. Shock, 2023, 59(1): 108-117.
2
Chen QH, Wu F, Liu L, et al. Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro[J]. Stem cell research & therapy, 2020, 11(1): 91.
3
杨吉林, 吴先正. 间充质干细胞在脓毒症治疗中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2018, 12(9): 525-529.
4
Abreu SC, Lopes-Pacheco M, Weiss DJ, et al. Mesenchymal stromal cell-derived extracellular vesicles in lung diseases: Current status and perspectives[J]. Front Cell Dev Biol, 2021, 9: 600711.
5
Zhang X, Ye L, Tang W, et al. Wnt/β-catenin participates in the repair of acute respiratory distress syndrome-associated early pulmonary fibrosis via mesenchymal stem cell microvesicles[J]. Drug Des Devel Ther, 2022, 16: 237-247.
6
Usunier B, Brossard C, L'Homme B, et al. Hgf and Tsg-6 released by mesenchymal stem cells attenuate colon radiation-induced fibrosis[J]. Int J Mol Sci, 2021, 22(4): 1790.
7
Quesnel C, Marchand-Adam S, Fabre A, et al. Regulation of hepatocyte growth factor secretion by fibroblasts in patients with acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 294(2): L334-L343
8
Wang HW, Zheng RQ, Chen QH, et al. Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF)[J]. Stem Cell Res Ther, 2017, 8(1): 211.
9
Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes[J]. Lancet, 2022 , 400(10358): 1145-1156.
10
Fang XZ, Li M, Wang YX, et al. Mechanosensitive ion channel Piezo1 mediates mechanical ventilation-exacerbated ARDS-associated pulmonary fibrosis[J]. J Adv Res, 2023, 53: 175-186.
11
Wendisch D, Dietrich O, Mari T, et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis[J]. Cell, 2021, 184(26): 6243-6261.
12
Aschner Y, Correll KA, Beke KM, et al. PTPα promotes fibroproliferative responses after acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 323(1): L69-L83.
13
Belén AP, Luis SL, Yuben M, et al. Induced pluripotent stem cell-derived lung alveolar epithelial type II cells reduce damage in bleomycin-induced lung fibrosis[J]. Stem Cell Res Ther, 2020, 11(1): 213.
14
Simone PS, Xiaomei X, Paola C, et al. Anti-fibrotic effects of different sources of MSC in bleomycin-induced lung fibrosis in C57BL6 male mice[J]. Respirology, 2021, 26(2): 161-170.
15
Hu X, Xu Q, Wan H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis[J]. Lab Invest, 2020, 100(6): 801-811.
16
Guo Z, Zhang Y, Yan F. Potential of mesenchymal stem cell-based therapies for pulmonary fibrosis[J]. DNA Cell Biol, 2022, 41(11): 951-965.
17
张威, 魏雅楠, 韩娜. 骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用[J/OL]. 中华临床医师杂志(电子版), 2021, 15(4): 265-271.
18
Gemayel J, Chaker D, El Hachem G, et al. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications[J]. Clin Transl Oncol, 2023, 25(7): 2056-2068.
19
Gad ES, Salama AA, El-Shafie, et al. The anti-fibrotic and anti-inflammatory potential of Bbone marrow-derived mesenchymal stem cells and nintedanib in bleomycin-induced lung fibrosis in rats[J]. Inflammation, 2020, 43(1): 123-134.
20
Li S, Zhang J, Feng G, et al. The emerging role of extracellular vesicles from mesenchymal stem cells and macrophages in pulmonary fibrosis: Insights into miRNA delivery[J]. Pharmaceuticals (Basel), 2022, 15(10): 1276.
21
Guo Q, Lu Y, Cheng X, et al. Hepatocyte growth factor delivered by nanocomposites for gene therapy of bleomycin-induced pulmonary fibrosis in rats[J]. Curr Drug Deliv, 2023, 20(9): 1368-1379.
22
Chen H, Luo Y, Zhu Y, et al. Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats[J]. Front Pharmacol, 2023, 13: 1070736.
23
Chen WX, Zhou J, Zhou SS, et al. Microvesicles derived from human Wharton's jelly mesenchymal stem cells enhance autophagy and ameliorate acute lung injury via delivery of miR-100[J]. Stem Cell Res Ther, 2020, 11(1): 113.
24
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018, 9(1): 63.
[1] 董道然, 宗媛, 王艳, 荆程桥, 任嘉伟. 右心保护性通气策略在急性呼吸窘迫综合征患者中的应用:一项前瞻性随机对照研究[J]. 中华危重症医学杂志(电子版), 2023, 16(06): 461-468.
[2] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[3] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[4] 拉周措毛, 山春玲, 李国蓉, 华毛. 青海西宁地区IPF-LC的病理类型及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 25-29.
[5] 范会业, 毛杨, 王文静, 李德峰. 大蒜素改善博莱霉素诱导小鼠肺纤维化的作用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 9-13.
[6] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[7] 刘珂, 张婧娴, 王如刚. 肺超声纹理特征ARDS与心源性肺水肿的鉴别诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 892-894.
[8] 张晶晶, 刘锦, 张玉华. 高流量无创呼吸湿化治疗仪对肺纤维化并发感染及氧分压的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 883-885.
[9] 陈向军, 顾兴, 王在强, 王光辉, 王莉, 方芳, 金发光, 王瑞璇. 颗粒酶B激活TGF-β1/Smad3通路促进博来霉素导致的肺纤维化[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 630-634.
[10] 许娟, 张党锋. 尼达尼布对肺纤维化小鼠肺功能及内质网应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 673-675.
[11] 王晶晶, 谢晖, 邓璞钰, 张晨晨, 田学, 谢云, 王瑞兰. 新型冠状病毒感染ARDS患者EIT监测下俯卧位通气成像的改变[J]. 中华重症医学电子杂志, 2024, 10(01): 31-37.
[12] 李浩南, 张煜彭, 付焱, 冯继伟, 刘凯, 张文凯. 缝隙连接蛋白43在肺部疾病中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 60-65.
[13] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[14] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要