切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 259 -267. doi: 10.3877/cma.j.issn.1674-0785.2024.03.005

临床研究

三尖瓣反流速度评估肺动脉高压患者心脏结构改变的研究
吴欣1, 袁晓晨1, 沈慧1, 秦建华1,()   
  1. 1. 225000 江苏扬州,扬州大学附属医院心血管内科
  • 收稿日期:2024-01-03 出版日期:2024-03-15
  • 通信作者: 秦建华
  • 基金资助:
    江苏省自然科学基金青年基金项目(BK20210142); 国家自然科学基金资助项目(82100428)

Evaluation of cardiac structural changes in patients with pulmonary hypertension by tricuspid regurgitation velocity

Xin Wu1, Xiaocheng Yuan1, Hui Shen1, Jianhua Qin1,()   

  1. 1. Department of Cardiovascular Medicine, Yangzhou University Hospital, Yangzhou 225000, China
  • Received:2024-01-03 Published:2024-03-15
  • Corresponding author: Jianhua Qin
引用本文:

吴欣, 袁晓晨, 沈慧, 秦建华. 三尖瓣反流速度评估肺动脉高压患者心脏结构改变的研究[J]. 中华临床医师杂志(电子版), 2024, 18(03): 259-267.

Xin Wu, Xiaocheng Yuan, Hui Shen, Jianhua Qin. Evaluation of cardiac structural changes in patients with pulmonary hypertension by tricuspid regurgitation velocity[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(03): 259-267.

目的

探讨不同水平三尖瓣反流速度(TV)的肺动脉高压患者临床危险因素的相关性。

方法

选取2021年在扬州大学附属医院就诊于心内科的住院患者,其心脏彩超结果提示三尖瓣反流速度>280 cm/s(TV>280 cm/s)的肺动脉高压患者101例并根据三尖瓣反流速度分为低TV组(TV<300 cm/s)和高TV组(TV>300 cm/s)对比分析2组患者临床特征、血常规、肾功能、血脂分析、甲状腺功能、血气分析、凝血功能、心脏彩超结果的差异,采用Logistic二元回归分析不同水平三尖瓣反流速度的肺动脉高压患者的危险因素及相关性,ROC曲线评估左心房、右心室大小的预测价值及效能。

结果

高TV组心衰的患病率显著高于低TV组,低TV组HDL、载脂蛋白A水平明显高于高TV组(P<0.05),低TV组左心房、右心室直径平均值小于高TV组,此差异有统计学意义(P<0.05);相关性分析:TV与左心房直径、右心室直径呈正相关(P<0.01),和HDL水平、载脂蛋白A水平呈负性相关(P<0.05);Logistic二元回归分析:患有心力衰竭、左心房扩大、右心室扩大(P<0.05)是肺动脉高压发病的独立危险因素,载脂蛋白A水平升高(P<0.05)是肺动脉高压发病的保护性因子。AUC曲线分析:左心房直径预测肺动脉高压的曲线下面积为0.640(P<0.05),左心房直径的敏感度为47.1%、特异度为79.6%。右心室直径水平预测肺动脉高压的曲线下面积为0.643(P<0.05),右心室直径的敏感度为56.9%、特异性为69.4%,具有统计学意义(P<0.05)。联合预判AUC为0.643,特异性为83.7%,具有统计学意义(P<0.05)。

结论

肺动脉高压患者其三尖瓣反流速度越大,更容易导致心脏结构改变,往往导致左心房及右心室扩大,临床诊疗时关注三尖瓣反流速度,及早发现心室重构并进行干预,可改善肺动脉高压患者的预后。

Objective

To investigate the correlation of clinical risk factors in pulmonary hypertension patients with different levels of tricuspid regurgitation velocity.

Methods

Inpatients admitted to the Department of Cardiology of the Affiliated Hospital of Yangzhou University in 2021 were selected. The results of cardiac color ultrasound indicated that 101 patients with pulmonary hypertension had a tricuspid regurgitation velocity >280 cm/s (TV>280 cm/s), and they were divided into a low TV group (TV<300 cm/s) and a high TV group (TV>300 cm/s) according to the tricuspid regurgitation velocity. The clinical characteristics, routine blood parameters, renal function, and lipid panel were compared between the two groups. The risk factors for pulmonary hypertension and the correlation of pulmonary hypertension with tricuspid regurgitation velocity at different levels were analyzed by Logistic binary regression. The predictive value and efficacy of left atrium and right ventricle size were evaluated by receiver operating characteristic (ROC) curve analysis.

Results

The prevalence of heart failure in the high TV group was significantly higher than that of the low TV group. The levels of high-density lipoprotein (HDL) and apolipoprotein A in the low TV group were significantly higher than those of the high TV group (P<0.05). The mean diameter of the left atrium and right ventricle in the low TV group was significantly lower than that of the high TV group (P<0.05). TV was positively correlated with the diameter of the left atrium and right ventricle (P<0.01), and negatively correlated with the levels of HDL and apolipoprotein A (P<0.05). Logistic binary regression analysis showed that heart failure, left atrial enlargement, and right ventricular enlargement (P<0.05) were independent risk factors for pulmonary hypertension, and elevated apolipoprotein A level (P<0.05) was a protective factor for pulmonary hypertension. ROC curve analysis showed that the area under the ROC curve (AUC) of left atrial diameter for predicting pulmonary hypertension was 0.640 (P<0.05), with a sensitivity of 47.1% and specificity of 79.6%. The AUC of right ventricular diameter in predicting pulmonary hypertension was 0.643 (P<0.05), with a sensitivity of 56.9% and specificity of 69.4%. The AUC of combined prediction by left atrial diameter plus right ventricular diameter was 0.643 (P<0.05), with a specificity of 83.7%.

Conclusion

The greater the tricuspid valve regurgitation velocity in patients with pulmonary hypertension, the more likely it is to lead to cardiac structural changes, often resulting in enlargement of the left atrium and right ventricle. In clinical diagnosis and treatment, attention paid to tricuspid valve regurgitation velocity, early detection of ventricular remodeling, and early intervention can improve the prognosis of patients with pulmonary hypertension.

表1 低TV组和高TV组之间基线特征比较[n(%)]
图1 TV1组与TV2组心力衰竭占比柱状图
表2 低TV组和高TV组之间生化资料比较[,%]
相关因素 TV1组(TV<300 cm/s)(n=49) TV2组(TV>300 cm/s)(n=52) χ2/t P
Cr 86.00(61.40,104.20) 81.20(59.25,106.25) 0.180 0.857
BUN 7.33(5.58,9.45) 7.88(6.43,11.27) 1.532 0.125
UA 399.337±129.9791 417.556±145.8808 0.513 0.608
MPV 10.892±1.4438 10.794±1.4112 0.02 0.984
PCT 0.1735±0.04867 0.1721±0.06226 0.381 0.703
PDW 16.30(15.80,16.50) 16.30(16.00,16.60) 0.317 0.751
PLT 161.43±48.977 162.29±62.607 0.041 0.967
RDW 13.30(12.65,14.60) 13.65(13.13,14.58) 1.438 0.150
MCHC 314.39±15.557 317.60±14.466 1.074 0.285
MCH 30.40(28.90,31.15) 30.35(29.43,31.60) 0.493 0.622
MCV 94.808±7.1399 95.377±5.9118 0.116 0.908
HCT 40.359±7.2181 38.392±7.3235 1.358 0.177
HB 127.31±24.668 122.00±23.948 1.096 0.276
RBC 4.32(3.84,4.67) 4.08(3.66,4.51) 1.373 0.170
TC 3.6406±1.14845 3.3100±0.82378 1.615 0.110
TG 0.92(0.70,1.46) 0.84(0.69,1.19) 0.898 0.369
HDL 1.0291±0.27773 0.9178±0.29602 2.174 0.030
LDL 2.00(1.41,2.63) 1.80(1.24,2.37) 1.302 0.196
ApoA 1.1994±0.22003 1.1053±0.21376 2.125 0.036
ApoB 0.77(0.59,0.96) 0.68(0.55,0.83) 1.305 0.192
LP(a) 140.00(61.70,298.60) 144.50(77.80,278.10) 0.282 0.778
TSH 2.08(1.38,3.08) 1.54(1.17,2.54) 1.299 0.194
FT3p 4.42(3.62,4.88) 4.22(3.83,4.63) 0.783 0.434
FT4p 14.1337±5.95129 13.1212±3.72604 0.047 0.963
pH 7.43(7.38,7.44) 7.44(7.42,7.48) 2.381 0.017
pCO2 41.00(32.50,44.25) 40.00(33.00,45.00) 0.037 0.970
pO2 91.81±31.989 87.71±33.293 0.448 0.654
BE 1.215±5.2231 2.606±4.5877 1.077 0.287
BEecf 1.335±6.2394 2.806±5.3540 0.962 0.341
HCO3- 25.908±6.1667 27.035±5.1162 0.755 0.454
HCO3-std 25.819±4.0509 26.859±3.6190 1.031 0.307
SaO2 96.00(94.50,97.50) 94.50(79.75,97.00) 1.088 0.276
PT 12.45(11.80,13.88) 13.10(12.00,15.08) 1.702 0.089
INR 1.10(1.03,1.23) 1.15(1.05,1.35) 1.705 0.088
APTT 29.20(26.85,31.78) 29.25(26.35,34.43) 0.252 0.801
TT 18.20(17.80,19.50) 18.35(16.93,19.28) 0.824 0.410
FIB 2.93(2.36,3.55) 2.85(2.41,3.71) 0.348 0.727
D-D 0.59(0.33,1.36) 0.75(0.39,1.43) 1.249 0.212
图2 TV1组与TV2组HDL、载脂蛋白、左心房内径、右心室对比
表3 低TV组和高TV组之间心超结果比较[,%]
表4 TV与危险因素的相关性分析
图3 TV与左心房直径、右心室直径、HDL水平、载脂蛋白A相关性
表5 二元Logistic回归分析
表6 ROC曲线分析左心房、右心室直径对肺动脉高压的预测价值[n,%]
图4 左心房(图a)、右心室(图b)及联合(图c)预判肺动脉高压患者伴有高三尖瓣反流速度的ROC曲线
1
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension [J]. Eur Respir J, 2019,53(1): 1801913.
2
Poch D, Mandel J. Pulmonary hypertension [J]. Ann Intern Med, 2021,174(4): ITC49-ITC64.
3
D'Alto M, Di Maio M, Romeo E, et al. Echocardiographic probability of pulmonary hypertension: a validation study [J]. Eur Respir J, 2022,60(2): 2102548.
4
Chen J, Rathinasabapathy A, Luo J, et al. Differential serum lipid distribution in IPAH and CHD-PAH patients [J]. Respir Med, 2022,191: 106711.
5
Chen J, Rathinasabapathy A, Luo J, et al. Differential serum lipid distribution in IPAH and CHD-PAH patients [J]. Respir Med, 2022,191: 106711.
6
Farmakis IT, Demerouti E, Karyofyllis P, et al. Echocardiography in pulmonary arterial hypertension: Is it Time to reconsider its prognostic utility?[J]. J Clin Med, 2021,10(13): 2826.
7
Li H, Li X, Hao Y, et al. Maresin 1 intervention reverses experimental pulmonary arterial hypertension in mice [J]. Br J Pharmacol, 2022,179(22): 5132-5147.
8
Luo L, Wu J, Lin T, et al. Influence of atorvastatin on metabolic pattern of rats with pulmonary hypertension [J]. Aging (Albany NY), 2021,13(8): 11954-11968.
9
Miotti C, Papa S, Manzi G, et al. The growing role of echocardiography in pulmonary arterial hypertension risk stratification: the missing piece [J]. J Clin Med, 2021,10(4): 619.
10
Farmakis IT, Demerouti E, Karyofyllis P, et al. Echocardiography in pulmonary arterial hypertension: Is it time to reconsider its prognostic utility?[J]. J Clin Med, 2021,10(13): 2826.
11
Kishiki K, Singh A, Narang A, et al. Impact of severe pulmonary arterial hypertension on the left heart and prognostic implications [J]. J Am Soc Echocardiogr, 2019,32(9): 1128-1137.
12
Fukumitsu M, Groeneveldt JA, Braams NJ, et al. When right ventricular pressure meets volume: The impact of arrival time of reflected waves on right ventricle load in pulmonary arterial hypertension [J]. J Physiol, 2022,600(10): 2327-2344.
13
Watanabe R, Amano H, Saito F, et al. Echocardiographic surrogates of right atrial pressure in pulmonary hypertension [J]. Heart Vessels, 2019,34(3): 477-483.
14
Spiekerkoetter E, Kawut SM, de Jesus Perez VA. New and emerging therapies for pulmonary arterial hypertension [J]. Annu Rev Med, 2019,70: 45-59.
15
Xiao Y, Chen PP, Zhou RL, et al. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: a review [J]. Aging Dis, 2020,11(6): 1623-1639.
16
Vonk Noordegraaf A, Chin KM, Haddad F, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update [J]. Eur Respir J, 2019,53(1): 1801900.
17
Ferrara F, Zhou X, Gargani L, et al. Echocardiography in pulmonary arterial hypertension [J]. Curr Cardiol Rep, 2019,21(4): 22.
18
Benza RL, Miller DP, Gomberg-Maitland M, et al. Predicting survival in pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management (REVEAL) [J]. Circulation, 2010,122(2): 164-172.
19
Harbaum L, Ghataorhe P, Wharton J, et al. Reduced plasma levels of small HDL particles transporting fibrinolytic proteins in pulmonary arterial hypertension [J]. Thorax, 2019,74(4): 380-389.
20
Cassady SJ, Ramani GV. Right heart failure in pulmonary hypertension [J]. Cardiol Clin, 2020,38(2): 243-255.
21
Dong Y, Pan Z, Wang D, et al. Prognostic value of cardiac magnetic resonance-derived right ventricular remodeling parameters in pulmonary hypertension: a systematic review and meta-analysis [J]. Circ Cardiovasc Imaging, 2020,13(7): e010568.
22
Padervinskienė L, Krivickienė A, Hoppenot D, et al. Prognostic value of left ventricular function and mechanics in pulmonary hypertension: a pilot cardiovascular magnetic resonance feature tracking study [J]. Medicina (Kaunas), 2019,55(3): 73.
23
Fortuni F, Butcher SC, Dietz MF, et al. Right ventricular-pulmonary arterial coupling in secondary tricuspid regurgitation [J]. Am J Cardiol, 2021,148: 138-145.
24
Prisco SZ, Eklund M, Moutsoglou DM, et al. Intermittent fasting enhances right ventricular function in preclinical pulmonary arterial hypertension [J]. J Am Heart Assoc, 2021,10(22): e022722.
25
Huitema MP, Bakker ALM, Mager JJ, et al. Predicting pulmonary hypertension in sarcoidosis; value of PH probability on echocardiography [J]. Int J Cardiovasc Imaging,, 2020,36(8): 1497-1505.
26
Rako ZA, Kremer N, Yogeswaran A, et al. Adaptive versus maladaptive right ventricular remodelling [J]. ESC Heart Fail, 2023,10(2): 762-775.
27
Jonas K, Magoń W, Podolec P, et al. Triglyceride-to-high-density lipoprotein cholesterol ratio and systemic inflammation in patients with idiopathic pulmonary arterial hypertension [J]. Med Sci Monit, 2019,25: 746-753.
28
Wang GF, Guan LH, Zhou DX, et al. Serum high-density lipoprotein cholesterol is significantly associated with the presence and severity of pulmonary arterial hypertension: A retrospective cross-sectional study [J]. Adv Ther, 2020,37(5): 2199-2209.
29
Habert P, Capron T, Hubert S, et al. Quantification of right ventricular extracellular volume in pulmonary hypertension using cardiac magnetic resonance imaging [J]. Diagn Interv Imaging,101(5): 311-320.
30
Wolters AEP, Wolters AJP, van Kraaij TDA, et al. Echocardiographic estimation of pulmonary hypertension in COVID-19 patients [J]. Neth Heart J, 2022,30(11): 510-518.
31
沈慧, 张振刚, 龚开政. 肺动脉高压动物模型与分子机制的研究进展 [J/OL]. 中华临床医师杂志(电子版), 2019,13(2): 141-146.
32
中国医师协会风湿免疫科医师分会风湿病相关肺血管/间质病学组, 国家风湿病数据中心, 国家皮肤与免疫疾病临床医学研究中心. 2020中国结缔组织病相关肺动脉高压诊治专家共识 [J]. 中华内科杂志, 2021,60(5): 406-420.
33
Najjar E, Lund LH, Hage C, et al. The differential impact of the left atrial pressure components on pulmonary arterial compliance-resistance relationship in heart failure [J]. J Card Fail, 2021,27(3): 277-285.
34
Mamazhakypov A, Sartmyrzaeva M, Kushubakova N, et al. Right ventricular response to acute hypoxia exposure: a systematic review [J]. Front Physiol, 2022,12: 786954.
[1] 王益佳, 周青, 曹省, 袁芳洁, 周妍, 张梅. 中国经胸超声心动图检查存图及报告质控现状分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 657-663.
[2] 莫莹, 李文秀, 李刚, 王霄芳, 王强, 丁文虹. 超声心动图在三尖瓣下移畸形中的临床应用价值[J]. 中华医学超声杂志(电子版), 2024, 21(07): 702-708.
[3] 王秋莲, 张莹, 李春敏, 徐树明, 张玉奇. 胎儿主动脉弓部梗阻伴发复杂心内畸形的产前超声诊断及漏误诊分析[J]. 中华医学超声杂志(电子版), 2024, 21(07): 718-725.
[4] 孔莹, 惠品晶, 丁亚芳, 周炳元. 基于对比增强经颅多普勒的多模式超声评估卵圆孔未闭相关右向左分流的临床意义[J]. 中华医学超声杂志(电子版), 2024, 21(04): 345-351.
[5] 卢天祺, 张巍, 周康, 毕士玉, 张羽, 杨秀华. 血流向量成像技术在不同Child-Pugh分级乙肝患者左心功能评价中的价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 352-360.
[6] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[7] 张帧, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 陈阳. 二维斑点追踪技术评价正常中晚孕期胎儿右心房功能的初步研究[J]. 中华医学超声杂志(电子版), 2024, 21(04): 384-390.
[8] 张盼盼, 赵博文, 潘美, 彭晓慧, 陈冉, 田园诗, 林仙方, 惠姗姗, 沈婷婷. 胎儿左心房后间隙指数在胎儿肺动脉瓣缺如综合征中的应用价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 391-398.
[9] 张胜男, 苗雅敬, 周虹, 韩高洁, 王静, 仝巧立, 张旭倩, 尹洪宁. 左心耳三维经食管超声测量与Watchman左心耳封堵器大小的相关性研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 107-113.
[10] 刘韩, 王胰, 舒庆兰, 彭博, 尹立雪, 谢盛华. 基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 121-127.
[11] 成汉林, 史中青, 戚占如, 王小贤, 曾子炀, 单淳劼, 钱隼南, 罗守华, 姚静. 基于深度学习的超声心动图动态图像切面识别研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 128-136.
[12] 冯敏, 赵博文, 潘美, 彭晓慧, 陈冉, 毛彦恺, 陈阳. 超声心动图定量右心时间间期在评估右心室流出道梗阻性疾病胎儿右心功能中的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 151-157.
[13] 李博, 彭芳华, 孔德璇, 张欢欢, 曲东辉, 王锟, 阚长利, 聂明辉, 刘天鑫, 吴文瑛. 超声心动图诊断胎儿单纯肺动脉瓣狭窄的价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 158-162.
[14] 张艺萱, 罗金丹, 葛小丽, 钟红琴. 先天性心脏病伴PH血清H-FABP、NT-proBNP与肺动脉内径、血流速度及PASP的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 252-255.
[15] 王雪, 梁佳, 张伊. 超声心动图联合心电图对游泳运动员左心室肥厚的预测价值[J]. 中华临床医师杂志(电子版), 2024, 18(04): 369-374.
阅读次数
全文


摘要