切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 309 -314. doi: 10.3877/cma.j.issn.1674-0785.2024.03.012

综述

TGF-β在放射治疗中的双重调控作用
郑鑫蓥1, 张惠勇1, 黄星1, 邱磊1, 方庆亮2, 鹿振辉1, 王蕾2,()   
  1. 1. 200030 上海,上海中医药大学附属龙华医院呼吸疾病研究所
    2. 200030 上海,上海中医药大学附属龙华医院放射治疗科
  • 收稿日期:2023-12-06 出版日期:2024-03-15
  • 通信作者: 王蕾
  • 基金资助:
    上海市自然科学基金项目(23ZR1463900); 上海市卫生行业临床专项(20214Y0377); 上海市医学创新研究专项(21Y11922400)

Dual regulatory role of TGF-β in radiaotherapy

Xinying Zheng1, Huiyong Zhang1, Xing Huang1, Lei Qiu1, Qingliang Fang2, Zhenhui Lu1, Lei Wang2,()   

  1. 1. Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
    2. Department of Radiation Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
  • Received:2023-12-06 Published:2024-03-15
  • Corresponding author: Lei Wang
引用本文:

郑鑫蓥, 张惠勇, 黄星, 邱磊, 方庆亮, 鹿振辉, 王蕾. TGF-β在放射治疗中的双重调控作用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 309-314.

Xinying Zheng, Huiyong Zhang, Xing Huang, Lei Qiu, Qingliang Fang, Zhenhui Lu, Lei Wang. Dual regulatory role of TGF-β in radiaotherapy[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(03): 309-314.

放射治疗通过高能射线的电离辐射作用杀死癌细胞治疗肿瘤。转化生长因子-β(transforming growth factor beta,TGF-β)在受辐照的组织中表达增加,通过减轻放射敏感性和逆转辐射抗性发挥双重调节作用,并参与肿瘤微环境促进上皮细胞-间充质转化,诱导肿瘤细胞免疫逃逸和正常组织放射性纤维化。本文对TGF-β在放射治疗中的作用进行探讨,以期为放疗提供一定的理论依据。

Radiotherapy exerts therapeutic effects on tumors by killing cancer cells through the ionizing radiation effect of high-energy rays. Transforming growth factor-beta (TGF-β), whose expression is increased in irradiated tissues, plays a dual regulatory role by decreasing radiosensitivity and reversing radiation resistance. TGF-β also has a role in the tumor microenvironment to promote epithelial-mesenchymal transition, and induce immune escape of tumor cells and radiofibrosis in normal tissues. This paper discusses the dual role of TGF-β in radiotherapy, aiming to provide a theoretical basis for radiotherapy.

表1 药物联合放疗的临床应用举例
1
Delaney G, Jacob S, Featherstone C, et al. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines [J]. Cancer, 2005,104(6): 1129-1137.
2
Hanna TP, Shafiq J, Delaney GP, et al. The population benefit of evidence-based radiotherapy: 5-Year local control and overall survival benefits [J]. Radiother Oncol, 2018,126(2): 191-197.
3
Grimes DR. Radiofrequency radiation and cancer: a review [J]. JAMA Oncol, 2022,8(3): 456-461.
4
Shi X, Yang J, Deng S, et al. TGF-beta signaling in the tumor metabolic microenvironment and targeted therapies [J]. J Hematol Oncol, 2022,15(1): 135.
5
Reisländer T, Groelly FJ, Tarsounas M. DNA Damage and Cancer Immunotherapy: A sting in the tale [J]. Mol Cell, 2020,80(1): 21-28.
6
Barcellos-Hoff MH, Cucinotta FA. New tricks for an old fox: impact of TGFβ on the DNA damage response and genomic stability [J]. Sci Signal, 2014,7(341): re5.
7
Shiloh Y. ATM and related protein kinases: safeguarding genome integrity [J]. Nat Rev Cancer, 2003,3(3): 155-168.
8
Li Y, Liu Y, Chiang YJ, et al. DNA damage activates TGF-β signaling via ATM-c-Cbl-mediated stabilization of the type II receptor TβRII [J]. Cell Rep, 2019,28(3): 735-745.
9
Kirshner J, Jobling MF, Pajares MJ, et al. Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress [J]. Cancer Res, 2006,66(22): 10861-10869.
10
Kciuk M, Bukowski K, Marciniak B, et al. Advances in DNA repair-emerging players in the arena of eukaryotic DNA repair [J]. Int J Mol Sci, 2020,21(11):3934.
11
Centurione L, Aiello FB. DNA repair and cytokines: TGF-β, IL-6, and thrombopoietin as different biomarkers of radioresistance [J]. Front Oncol, 2016,6: 175.
12
Liang S, Thomas SE, Chaplin AK, et al. Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs [J]. Nature, 2022,601(7894): 643-648.
13
Ramu AK, Ali D, Alarifi S, et al. Reserpine inhibits DNA repair, cell proliferation, invasion and induces apoptosis in oral carcinogenesis via modulation of TGF-β signaling [J]. Life Sci, 2021,264: 118730.
14
Dai L, Dai Y, Han J, et al. Structural insight into BRCA1-BARD1 complex recruitment to damaged chromatin [J]. Mol Cell, 2021,81(13): 2765-2777.
15
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer [J]. Signal Transduct Target Ther, 2020,5(1): 60.
16
Kang SH, Bak DH, Chung BY, et al. Centipedegrass extract enhances radiosensitivity in melanoma cells by inducing G2/M cell cycle phase arrest [J]. Mol Biol Rep, 2021,48(2): 1081-1091.
17
Reynisdóttir I, Polyak K, Iavarone A, et al. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta [J]. Genes Dev, 1995,9(15): 1831-1845.
18
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling [J]. Sci Signal, 2019,12(570): eaav5183.
19
Subbarayan K, Massa C, Lazaridou M F, et al. Identification of a novel miR-21-3p/TGF-beta signaling-driven immune escape via the MHC class I/biglycan axis in tumor cells [J]. Clin Transl Med, 2021,11(3): e306.
20
Lee YJ, Han Y, Lu HT, et al. TGF-beta suppresses IFN-gamma induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression [J]. J Immunol, 1997,158(5): 2065-2075.
21
Du F, Qi X, Zhang A, et al. MRTF-A-NF-κB/p65 axis-mediated PDL1 transcription and expression contributes to immune evasion of non-small-cell lung cancer via TGF-β [J]. Exp Mol Med, 2021,53(9): 1366-1378.
22
Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells [J]. Nat Med, 2001,7(10): 1118-1122.
23
Sun X, Cui Y, Feng H, et al. TGF-beta signaling controls Foxp3 methylation and T reg cell differentiation by modulating Uhrf1 activity [J]. J Exp Med, 2019,216(12): 2819-2837.
24
Lainé A, Labiad O, Hernandez-Vargas H, et al. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation [J]. Nat Commun, 2021,12(1): 6228.
25
Zhang F, Wang H, Wang X, et al. TGF-beta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype [J]. Oncotarget, 2016,7(32): 52294-52306.
26
李旭, 黄尚科, 王玉珍, 等. 乳腺癌组织肿瘤相关巨噬细胞与肿瘤浸润转移的临床及病理关系[J/OL]. 中华临床医师杂志(电子版), 2017,11(18): 2217-2222.

URL    
27
张琪悦, 王晓东. IL-8与肿瘤免疫的研究进展 [J/OL]. 中华临床医师杂志(电子版), 2023,17(5): 605-613.
28
李晓梅, 叶红, 秦书明, 等. TMPRSS4通过上皮间质转化促进乳腺癌细胞的增殖、侵袭和转移[J/OL]. 中华临床医师杂志(电子版), 2018,12(5): 279-287.
29
Feng F, Zhao Z, Cai X, et al. Cyclin-dependent kinase subunit2 (CKS2) promotes malignant phenotypes and epithelial-mesenchymal transition-like process in glioma by activating TGFβ/SMAD signaling [J]. Cancer Med, 2023,12(5): 5889-5907.
30
Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells [J]. Nat Methods, 2007,4(9): 721-726.
31
Su Y, Feng W, Shi J, et al. circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway [J]. Mol Cancer, 2020,19(1): 23.
32
Esposito M, Fang C, Cook KC, et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis [J]. Nat Cell Biol, 2021,23(3): 257-267.
33
Chen X, Yan N. Stachydrine inhibits TGF-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma cells through the TGF-β/Smad and PI3K/Akt/mTOR signaling pathways [J]. Anticancer Drugs, 2021,32(8): 786-792.
34
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition [J]. Nat Rev Mol Cell Biol, 2014,15(3): 178-196.
35
Liu Y, He K, Hu Y, et al. YAP modulates TGF-β1-induced simultaneous apoptosis and EMT through upregulation of the EGF receptor [J]. Sci Rep, 2017,7: 45523.
36
Hao Y, Baker D, Ten D P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis [J]. Int J Mol Sci, 2019,20(11): 2767.
37
Xue G, Restuccia DF, Lan Q, et al. Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-β signaling axes [J]. Cancer Discov, 2012,2(3): 248-259.
38
刘蔚, 祝训浩, 王修竹. TGF-β促进胰腺癌发展的相关研究进展 [J]. 临床医学进展, 2022,12(12): 11405-11411.
39
庄乾伟, 刘广龙, 王丽珍, 等. 转TGF-β1基因小鼠体内放疗敏感性初步评价 [J]. 中国口腔颌面外科杂志, 2013,11(3): 183-191.
40
Aubrey BJ, Kelly GL, Janic A, et al. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? [J]. Cell Death Differ, 2018,25(1): 104-113.
41
Wei H, Wang H, Wang G, et al. Structures of p53/BCL-2 complex suggest a mechanism for p53 to antagonize BCL-2 activity [J]. Nat Commun, 2023,14(1): 4300.
42
Brentnall M, Rodriguez-Menocal L, De Guevara RL, et al. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis [J]. BMC Cell Biol, 2013,14: 32.
43
Sheikh MS, Fornace AJ. Death and decoy receptors and p53-mediated apoptosis [J]. Leukemia, 2000,14(8): 1509-1513.
44
Ahmed MM, Alcock RA, Chendil D, et al. Restoration of transforming growth factor-beta signaling enhances radiosensitivity by altering the Bcl-2/Bax ratio in the p53 mutant pancreatic cancer cell line MIA PaCa-2 [J]. J Biol Chem, 2002,277(3): 2234-2246.
45
Shi X, Yang J, Deng S, et al. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies [J]. J Hematol Oncol, 2022,15(1): 135.
46
Zhang Q, Yu N, Lee C. Mysteries of TGF-beta paradox in benign and malignant cells [J]. Front Oncol, 2014,4: 94.
47
Madhav A, Andres A, Duong F, et al. Antagonizing CD105 enhances radiation sensitivity in prostate cancer [J]. Oncogene, 2018,37(32): 4385-4397.
48
Konge J, Leteurtre F, Goislard M, et al. Breast cancer stem cell-like cells generated during TGFβ-induced EMT are radioresistant [J]. Oncotarget, 2018,9(34): 23519-23531.
49
Ehrhart EJ, Segarini P, Tsang ML, et al. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation [J]. FASEB J, 1997,11(12): 991-1002.
50
Park SH, Kim JY, Kim JM, et al. PM014 attenuates radiation-induced pulmonary fibrosis via regulating NF-kB and TGF-b1/NOX4 pathways [J]. Sci Rep, 2020,10(1): 16112.
51
Ying H, Fang M, Hang QQ, et al. Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway [J]. J Cell Mol Med, 2021,25(18): 8662-8675.
52
Tang Y, Yuan Q, Zhao C, et al. Targeting USP11 may alleviate radiation-induced pulmonary fibrosis by regulating endothelium tight junction [J]. Int J Radiat Biol, 2022,98(1): 30-40.
53
Zhen S, Qiang R, Lu J, et al. TGF-β1-based CRISPR/Cas9 Gene Therapy Attenuates Radiation-induced Lung Injury [J]. Curr Gene Ther, 2022,22(1): 59-65.
54
胡蝶. TGF-β3通过上皮间质转化抑制放射性肺纤维化及其机制研究 [D]. 广东药科大学, 2018.
55
Santibanez JF, Obradovic H, Kukolj T, et al. Transforming growth factor-beta, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition [J]. Dev Dyn, 2018,247(3): 382-395.
56
Broxmeyer H E. Associated guilt: radiation/bystanders[J]. Blood,2021,137(24):3314-3316.
57
Zhang J, Yao D, Zhang J, et al. TGF-β mediates thoracic radiation-induced abscopal effects of testis injury in rat [J]. Biochem Biophys Res Commun, 2019,514(3): 678-683.
58
Zhang YM, Zhang LY, Li YY, et al. Radiation-induced bystander effect on the genome of bone marrow mesenchymal stem cells in lung cancer [J]. Antioxid Redox Signal, 2023,38(10-12): 747-767.
59
Gu J, Sun Y, Song J, et al. Irradiation induces DJ-1 secretion from esophageal squamous cell carcinoma cells to accelerate metastasis of bystander cells via a TGF-β1 positive feedback loop [J]. J Exp Clin Cancer Res, 2022,41(1): 259.
60
Rodrigues-Junior DM, Tan SS, Lim SK, et al. Circulating extracellular vesicle-associated TGFbeta3 modulates response to cytotoxic therapy in head and neck squamous cell carcinoma [J]. Carcinogenesis, 2019,40(12): 1452-1461.
61
Schirmer MA, Mergler CP, Rave-Frank M, et al. Acute toxicity of radiochemotherapy in rectal cancer patients: a risk particularly for carriers of the TGFB1 Pro25 variant [J]. Int J Radiat Oncol Biol Phys, 2012,83(1): 149-157.
62
Mortensen R, Holmstrom MO, Lisle TL, et al. Pre-existing TGF-beta-specific T-cell immunity in patients with pancreatic cancer predicts survival after checkpoint inhibitors combined with radiotherapy [J]. J Immunother Cancer, 2023,11(3): e006432.
63
Reuther S, Szymczak S, Raabe A, et al. Association between SNPs in defined functional pathways and risk of early or late toxicity as well as individual radiosensitivity [J]. Strahlenther Onkol, 2015,191(1): 59-66.
64
Anscher MS, Marks LB, Shafman TD, et al. Using plasma transforming growth factor beta-1 during radiotherapy to select patients for dose escalation [J]. J Clin Oncol, 2001,19(17): 3758-3765.
65
Angele S, Romestaing P, Moullan N, et al. ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity [J]. Cancer Res, 2003,63(24): 8717-8725.
66
Grossberg AJ, Lei X, Xu T, et al. Association of transforming growth factor beta polymorphism C-509T with radiation-induced fibrosis among patients with early-stage breast cancer: A secondary analysis of a randomized clinical trial [J]. JAMA Oncol, 2018,4(12): 1751-1757.
67
Bentzen SM, Skoczylas JZ, Overgaard M, et al. Radiotherapy-related lung fibrosis enhanced by tamoxifen [J]. J Natl Cancer Inst, 1996,88(13): 918-922.
68
Yamazaki T, Gunderson AJ, Gilchrist M, et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a single-arm, phase 2 trial [J]. Lancet Oncol, 2022,23(9): 1189-1200.
69
Wick A, Desjardins A, Suarez C, et al. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma [J]. Invest New Drugs, 2020,38(5): 1570-1579.
70
Formenti SC, Lee P, Adams S, et al. Focal irradiation and systemic TGFbeta blockade in metastatic breast cancer [J]. Clin Cancer Res, 2018,24(11): 2493-2504.
71
Murphy JE, Wo JY, Ryan DP, et al. Total neoadjuvant therapy with Folfirinox in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial [J]. JAMA Oncol, 2019,5(7): 1020-1027.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?