切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 575 -583. doi: 10.3877/cma.j.issn.1674-0785.2024.06.009

综述

光免疫治疗在肿瘤领域的临床应用新进展
王昌前1, 林婷婷1, 宁雨露1, 王颖杰2, 谭文勇1,()   
  1. 1. 518100 深圳,南方医科大学深圳医院肿瘤科
    2. 100142 北京,空军特色医学中心放射治疗科
  • 收稿日期:2024-01-19 出版日期:2024-06-15
  • 通信作者: 谭文勇
  • 基金资助:
    国家自然科学基金面上项目(81974462); 深圳市医学科学院专项基金(B2302028)

Recent advances in application of near-infrared photoimmunotherapy in cancer

Changqian Wang1, Tingting Lin1, Yulu Ning1, Yingjie Wang2, Wenyong Tan1,()   

  1. 1. Department of Oncology, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
    2. Department of Radiation Oncology, Air Force Specialty Medical Center, Beijing 100142, China
  • Received:2024-01-19 Published:2024-06-15
  • Corresponding author: Wenyong Tan
引用本文:

王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.

Changqian Wang, Tingting Lin, Yulu Ning, Yingjie Wang, Wenyong Tan. Recent advances in application of near-infrared photoimmunotherapy in cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(06): 575-583.

近红外光免疫治疗(NIR-PIT)利用光敏剂耦合单克隆抗体的共轭物与相关性抗原结合,当近红外光照射到肿瘤区域时,共轭物在近红外光照射下发生结构变化通过物理应激方式介导肿瘤细胞或肿瘤相关细胞的损伤和死亡。这种治疗方式具有高度选择性和局部破坏性,可以最大程度地减少对周围正常组织的损伤。鉴于NIR-PIT疗法的高疗效、低毒性的特点,NIR-PIT在多种肿瘤的研究得到快速发展,有望成为一种新型抗肿瘤疗法。目前,多项Ⅰ/Ⅱ期关于NIR-PIT的临床研究结果表明PIT的疗效令人鼓舞,毒性反应可接受。已在头颈部鳞状细胞癌等进行Ⅲ期临床试验评估该治疗模式疗效。本综述文章对NIR-PIT抗肿瘤作用机制、可选的治疗靶点、在各肿瘤的研究进展、NIR的选择与递送,以及面临的挑战等研究进展进行了总结。

Near-infrared photoimmunotherapy (NIR-PIT) involves the conjugation of a photosensitizer with a monoclonal antibody that binds to a specific antigen. When near-infrared light is irradiated onto the tumor area, the conjugate undergoes structural changes and induces damage and death of tumor cells or tumor-associated cells through physical stress. This therapy has high selectivity and localized destructive effects, minimizing damage to surrounding normal tissues. Due to its high efficacy and low toxicity, NIR-PIT has rapidly developed as a promising novel anti-tumor therapy in various cancers. Currently, NIR-PIT is undergoing phase Ⅲ clinical trials for the evaluation of its safety and feasibility in the treatment of head and neck squamous cell carcinoma. This review summarizes the anti-tumor mechanisms and potential therapeutic targets of NIR-PIT, its research progress in various tumors, and the selection and delivery of NIR, as well as the challenges faced by this therapy.

表1 不同肿瘤的潜在分子靶向抗原
表2 目前正在开展的PIT相关临床试验*
CT的ID号 主要病种 CT期别 主要入组标准 拟入组例数 终点指标 状态 预计完成时间
NCT00758797 皮肤转移性黑色素瘤 1期 皮肤转移性恶性黑色素瘤、需有可测量病灶、PS评分0~2 7 主要指标:PIT耐受性和安全性;次要指标:PFS、OS、DOR 终止 2012.10研究终止
NCT05220748 HNSCC 1期 HNSCC或皮肤鳞癌、一线含铂化疗后R/M且不适合行局部治疗、至少有一个皮肤或口腔浅表病变可行PIT、PS评分0~2 36 主要指标:Ia期:PIT疗法安全性及可行性;Ib期:PIT联合帕博利珠治疗安全性及可行性;次要指标:药物血液浓度及有效率 撤销 2023.01.30因无法招募患者入组而撤销研究
NCT03769506 HNSCC 3期 无法根治的R-HNSCC、至少2线治疗后且为含铂类药物治疗失败或进展、接受过头颈部治疗性放射治疗、所有病灶均可进行PIT照射、有可评价病灶 275 主要指标:总生存期、无疾病进展生存期;次要指标:客观缓解率 招募中 2024.12.30
NCT02422979 HNSCC 1期/2期 不适合手术或放疗、接受含铂方案化疗的R-HNSCC、PS评分0~2 实际入组40 主要指标:1期:RM-1929的MTD或MFD、药物剂量与PIT的安全性;2期:1、固定剂量与固定轻剂量的最大耐受剂量(MTD)或最大可行剂量(MFD);2、重复给药的安全性 完成 2019.02.25
NCT05182866 R/M或皮肤鳞癌 2期单臂 R/M或皮肤鳞癌、至少有一个病灶可用于ASP-1929 治疗和评价、PS评分0或1 22 主要指标:pCR;次要指标:1年的局部复发率、DFS、PFS、2年OS 招募中 2025.09.18
NCT04305795 R/M HNSCC或R/M皮肤鳞癌 1期2期 不适合行放疗或手术的R/M HNSCC或皮肤鳞癌、PS评分0或1、至少一个可治疗和评价病灶 74 主要指标:PIT联合ICIs的毒性与安全性、ORR、DOR;次要指标:2年OS、PFS 准备招募 2025.06
NCT05265013 R/M HNSCC 2期单臂 含铂方案治疗后进展、不适合行放疗或手术局部治疗的R/M HNSCC、CPS评分>1、未接受ICIs治疗、已接受过头颈部放疗、PS评分0或1分 33 主要指标:ORR;次要指标:DOR、2年OS、PFS 准备招募 2024.04
1
Ogawa M, Takakura H. Photoimmunotherapy: A new cancer treatment using photochemical reactions [J]. Bioorg Med Chem, 2021, 43: 116274.
2
Mitsunaga M, Ogawa M, Kosaka N, et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules [J]. Nat Med, 2011, 17(12): 1685-1691.
3
Okuyama S, Nagaya T, Sato K, et al. Interstitial near-infrared photoimmunotherapy: effective treatment areas and light doses needed for use with fiber optic diffusers [J]. Oncotarget, 2018, 9(13): 11159-11169.
4
李芳, 辛俊勃, 施秦, 等. 肿瘤的近红外光免疫治疗研究进展 [J]. 中国药科大学学报 [J]. 2020, 51(6): 664-674.
5
Yamada M, Matsuoka K, Sato M, et al. Recent advances in localized immunomodulation technology: application of NIR-PIT toward clinical control of the local immune system [J]. Pharmaceutics, 2023, 15(2).
6
Kobayashi H, Choyke PL. Near-infrared photoimmunotherapy of cancer [J]. Acc Chem Res, 2019, 52(8): 2332-9.
7
Ogawa M, Tomita Y, Nakamura Y, et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity [J]. Oncotarget, 2017, 8(6): 10425-36.
8
Chen Z, Liu L, Liang R, et al. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect [J]. ACS nano, 2018, 12(8): 8633-45.
9
Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity [J]. Nat Rev Cancer, 2006, 6(7): 535-45.
10
Mohiuddin TM, Zhang C, Sheng W, et al. Near infrared photoimmunotherapy: a review of recent progress and their target molecules for cancer therapy [J]. Int J Mol Sci, 2023, 24(3).
11
Sano K, Nakajima T, Choyke PL, et al. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors [J]. ACS nano, 2013, 7(1): 717-724.
12
Maruoka Y, Wakiyama H, Choyke PL, et al. Near infrared photoimmunotherapy for cancers: A translational perspective [J]. EBioMedicine, 2021, 70: 103501.
13
董佳琳, 荆慧. 近红外光免疫治疗在乳腺癌治疗中的研究进展 [J]J 中国肿瘤临床, 2023, 50(22): 1164-1167.
14
Lum YL, Luk JM, Staunton DE, et al. Cadherin-17 targeted near-infrared photoimmunotherapy for treatment of gastrointestinal cancer [J]. Mol Pharm, 2020, 17(10): 3941-3951.
15
Tang Q, Nagaya T, Liu Y, et al. 3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo [J]. J Control Release, 2018, 279: 171-180.
16
Tang Q, Nagaya T, Liu Y, et al. Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo [J]. J Control Release, 2017, 260: 154-163.
17
Wang C, Gu B, Qi S, et al. Boosted photo-immunotherapy via near-infrared light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes [J]. Nanoscale Adv, 2024, 6(8): 2075-2087.
18
金凯, 郭驹, 唐婷, 等近红外光免疫疗法在恶性肿瘤中的研究进展 [J]. 广西医学, 2022, 44(9): 1031-1035.
19
Moore LS, de Boer E, Warram JM, et al. Photoimmunotherapy of residual disease after incomplete surgical resection in head and neck cancer models [J]. Cancer Med, 2016, 5(7): 1526-1534.
20
Nagaya T, Nakamura Y, Okuyama, et al. Syngeneic mouse models of oral cancer are effectively targeted by anti-CD44-Based NIR-PIT [J]. Mol Cancer Res, 2017, 15(12): 1667-1677.
21
Maruoka Y, Furusawa A, Okada R, et al. Combined cd44- and cd25-targeted near-infrared photoimmunotherapy selectively kills cancer and regulatory T cells in syngeneic mouse cancer models [J]. Cancer Immunol Res, 2020, 8(3): 345-355.
22
Kato T, Okada R, Furusawa A, et al. Simultaneously combined cancer cell- and CTLA4-targeted NIR-PIT causes a synergistic treatment effect in syngeneic mouse models [J]. Mol Cancer Ther, 2021, 20(11): 2262-2273.
23
Sato H, Noma K, Ohara T, et al. Dual-targeted near-infrared photoimmunotherapy for esophageal cancer and cancer-associated fibroblasts in the tumor microenvironment [J]. Sci Rep, 2022, 12(1): 20152.
24
Hartmans E, Linssen MD, Sikkens C, et al. Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines [J]. Oncotarget, 2017, 8(18): 29846-29856.
25
Katsube R, Noma K, Ohara T, et al. Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer [J]. Sci Rep, 2021, 11(1): 1693.
26
Emami F, Pathak S, Nguyen TT, et al. Photoimmunotherapy with cetuximab-conjugated gold nanorods reduces drug resistance in triple negative breast cancer spheroids with enhanced infiltration of tumor-associated macrophages [J]. J Control Release, 2021, 329: 645-664.
27
Nagaya T, Gorka AP, Nani RR, et al. Molecularly targeted cancer combination therapy with near-infrared photoimmunotherapy and near-infrared photorelease with duocarmycin-antibody conjugate [J]. Mol Cancer Ther, 2018, 17(3): 661-670.
28
Jin J, Krishnamachary B, Mironchik Y, et al. Phototheranostics of CD44-positive cell populations in triple negative breast cancer [J]. Sci Rep, 2016, 6: 27871.
29
Yamaguchi H, On J, Morita T, et al. Combination of near-infrared photoimmunotherapy using trastuzumab and small protein mimetic for HER2-positive breast cancer [J]. Int J Mol Sci, 2021, 22(22): 12213.
30
Yamaguchi H, Pantarat N, Suzuki T, et al. Near-infrared photoimmunotherapy using a small protein mimetic for HER2-overexpressing breast cancer [J]. Int J Mol Sci, 2019, 20(23): 5835.
31
Fukushima H, Kato T, Furusawa A, et al. Intercellular adhesion molecule-1-targeted near-infrared photoimmunotherapy of triple-negative breast cancer [J]. Cancer Sci, 2022, 113(9): 3180-3192.
32
Jin J, Barnett JD, Krishnamachary B, et al. Evaluating near-infrared photoimmunotherapy for targeting fibroblast activation protein-α expressing cells in vitro and in vivo [J]. Cancer Sci, 2023, 114(1): 236-246.
33
Nishimura T, Mitsunaga M, Ito K, et al. Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT [J]. Gastric Cancer, 2020, 23(1): 82-94.
34
Choi ES, Kim H, Kim HP, et al. CD44v8-10 as a potential theranostic biomarker for targeting disseminated cancer cells in advanced gastric cancer [J]. Sci Rep, 2017, 7(1): 4930.
35
Shirasu N, Yamada H, Shibaguchi H, et al. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy [J]. Int J Cancer, 2014, 135(11): 2697-2710.
36
Nakamura Y, Ohler ZW, Householder D, et al. Near infrared photoimmunotherapy in a transgenic mouse model of spontaneous epidermal growth factor receptor (EGFR)-expressing lung cancer [J]. Mol Cancer Ther, 2017, 16(2): 408-414.
37
Takahashi K, Taki S, Yasui H, et al. HER2 targeting near-infrared photoimmunotherapy for a CDDP-resistant small-cell lung cancer [J]. Cancer Med, 2021, 10(24): 8808-8819.
38
Sato K, Nagaya T, Mitsunaga M, et al. Near infrared photoimmunotherapy for lung metastases [J]. Cancer Lett, 2015, 365(1): 112-121.
39
Nagaya T, Nakamura Y, Sato K, et al. Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody [J]. Oncotarget, 2017, 8(5): 8807-8817.
40
Isobe Y, Sato K, Nishinaga Y, et al. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer [J]. EBioMedicine, 2020, 52: 102632.
41
Li F, Mao C, Yeh S, et al. Combinatory therapy of MRP1-targeted photoimmunotherapy and liposomal doxorubicin promotes the antitumor effect for chemoresistant small cell lung cancer [J]. Int J Pharm, 2022, 625: 122076.
42
Li F, Mao C, Yeh S, et al. MRP1-targeted near infrared photoimmunotherapy for drug resistant small cell lung cancer [J]. Int J Pharm, 2021, 604: 120760.
43
Zhang C, Gao L, Cai Y, et al. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model [J]. Biomaterials, 2016, 84: 1-12.
44
Okada R, Kato T, Furusawa A, et al. Local depletion of immune checkpoint ligand CTLA4 expressing cells in tumor beds enhances antitumor host immunity [J]. Adv Ther (Weinh), 2021, 4(5): 2000269.
45
Yasui H, Nishinaga Y, Taki S, et al. Near-infrared photoimmunotherapy targeting GPR87: Development of a humanised anti-GPR87 mAb and therapeutic efficacy on a lung cancer mouse model [J]. EBioMedicine, 2021, 67: 103372.
46
Hollandsworth HM, Amirfakhri S, Filemoni F, et al. Near-infrared photoimmunotherapy is effective treatment for colorectal cancer in orthotopic nude-mouse models [J]. PLoS One, 2020, 15(6): e0234643.
47
Wei D, Tao Z, Shi Q, et al. Selective photokilling of colorectal tumors by near-infrared photoimmunotherapy with a GPA33-targeted single-chain antibody variable fragment conjugate [J]. Mol Pharm, 2020, 17(7): 2508-2517.
48
Mączyńska J, Raes F, Da Pieve C, et al. Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy [J]. BMC Med, 2022, 20(1): 16.
49
Burley TA, Mączyńska J, Shah A, et al. Near-infrared photoimmunotherapy targeting EGFR-Shedding new light on glioblastoma treatment [J]. Int J Cancer, 2018, 142(11): 2363-2374.
50
Jing H, Weidensteiner C, Reichardt W, et al. Imaging and selective elimination of glioblastoma stem cells with theranostic near-infrared-labeled CD133-specific antibodies [J]. Theranostics, 2016, 6(6): 862-74.
51
Furusawa A, Okada R, Inagaki F, et al. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model [J]. Oncoimmunology, 2022, 11(1): 2019922.
52
Wei W, Jiang D, Ehlerding EB, et al. CD146-targeted multimodal image-guided photoimmunotherapy of melanoma [J]. Adv Sci (Weinh), 2019, 6(9): 1801237.
53
Railkar R, Krane LS, Li QQ, et al. Epidermal growth factor receptor (EGFR)-targeted photoimmunotherapy (PIT) for the treatment of EGFR-expressing bladder cancer [J]. Mol Cancer Ther, 2017, 16(10): 2201-2214.
54
Siddiqui MR, Railkar R, Sanford T, et al. Targeting epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) expressing bladder cancer using combination photoimmunotherapy (PIT) [J]. Sci Rep, 2019, 9(1): 2084.
55
Bou Kheir G, Aoun F, Roumeguere T. CD47 targeted near-infrared photo-immunotherapy: a promising tool combining monoclonal antibodies and photodynamics for treating human bladder cancer [J]. Transl Androl Urol, 2019, 8(6): 779-780.
56
Jin J, Sivakumar I, Mironchik Y, et al. PD-L1 near infrared photoimmunotherapy of ovarian cancer model [J]. Cancers (Basel), 2022, 14(3): 619.
57
Harada T, Nakamura Y, Sato K, et al. Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer [J]. Oncotarget. 2016 Nov 29;7(48):79408-79416.
58
Nagaya T, Nakamura Y, Okuyama S, et al. Near-infrared photoimmunotherapy targeting prostate cancer with prostate-specific membrane antigen (PSMA) antibody [J]. Mol Cancer Res, 2017, 15(9): 1153-1162.
59
Polikarpov DM, Campbell DH, Lund ME, et al. The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors [J]. Photodiagnosis Photodyn Ther, 2020, 32: 102064.
60
Kim G, Gaitas A. Extracorporeal photo-immunotherapy for circulating tumor cells [J]. PLoS One, 2015, 10(5): e0127219.
61
Johnson DE, Burtness B, Leemans CR, et al. Head and neck squamous cell carcinoma [J]. Nat Rev Dis Primers, 2020, 6(1): 92.
62
Zhang Y, Dong P, Yang L. The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment [J]. Front Immunol, 2023, 14: 1189323.
63
Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer [J]. J Clin Oncol, 2005, 23(11): 2445-2459.
64
Nakano K. Progress of molecular targeted therapy for head and neck cancer in clinical aspects [J]. Mol Biomed, 2021, 2(1): 15.
65
Cognetti DM, Johnson JM, Curry JM, et al. Phase 1/2a, open-label, multicenter study of RM-1929 photoimmunotherapy in patients with locoregional, recurrent head and neck squamous cell carcinoma [J]. Head Neck, 2021, 43(12): 3875-3887.
66
Chen J, Zhou J, Lu J, et al. Significance of CD44 expression in head and neck cancer: a systemic review and meta-analysis [J]. BMC Cancer, 2014, 14: 15.
67
周欣, 张慧媛, 王淑静, 等. 非小细胞肺癌靶向PET显像的临床研究进展 [J/OL]. 中华临床医师杂志(电子版), 2021, 15(2): 123-128.
68
Wu J, Wang D. CLIC1 Induces drug resistance in human choriocarcinoma through positive regulation of MRP1 [J]. Oncol Res, 2017, 25(6): 863-871.
69
Zhang Y. Epidemiology of esophageal cancer [J]. World J Gastroenterol, 2013, 19(34): 5598-606.
70
Suntharalingam M, Winter K, Ilson D, et al. Effect of the addition of cetuximab to paclitaxel, cisplatin, and radiation therapy for patients with esophageal cancer: The NRG oncology RTOG 0436 phase 3 randomized clinical trial [J]. JAMA Oncol, 2017, 3(11): 1520-1528.
71
Safran HP, Winter K, Ilson DH, et al. Trastuzumab with trimodality treatment for oesophageal adenocarcinoma with HER2 overexpression (NRG Oncology/RTOG 1010): a multicentre, randomised, phase 3 trial [J]. Lancet Oncol, 2022, 23(2): 259-269.
72
Stroes CI, Schokker S, Creemers A, et al. Phase II feasibility and biomarker study of neoadjuvant trastuzumab and pertuzumab with chemoradiotherapy for resectable human epidermal growth factor receptor 2-positive esophageal adenocarcinoma: TRAP study [J]. J Clin Oncol, 2020, 38(5): 462-471.
73
Kashima H, Noma K, Ohara T, et al. Cancer-associated fibroblasts (CAFs) promote the lymph node metastasis of esophageal squamous cell carcinoma [J]. Int J Cancer, 2019, 144(4): 828-840.
74
Liu R, Li H, Liu L, et al. Fibroblast activation protein: A potential therapeutic target in cancer [J]. Cancer Biol Ther, 2012, 13(3): 123-129.
75
Tiernan JP, Perry SL, Verghese ET, et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting [J]. Br J Cancer, 2013, 108(3): 662-667.
76
Yamashita S, Kojima M, Onda N, et al. Trastuzumab-based near-infrared photoimmunotherapy in xenograft mouse of breast cancer [J]. Cancer Med, 2023, 12(4): 4579-4589.
77
Bertucci F, Finetti P, Birnbaum D. Basal breast cancer: a complex and deadly molecular subtype [J]. Curr Mol Med, 2012, 12(1): 96-110.
78
Nagaya T, Sato K, Harada T, et al. Near infrared photoimmunotherapy targeting EGFR positive triple negative breast cancer: Optimizing the conjugate-light regimen [J]. PLoS One, 2015, 10(8): e0136829.
79
Lu Y, Wang Y, Liu W, et al. Photothermal "nano-dot" reactivate "immune-hot" for tumor treatment via reprogramming cancer cells metabolism [J]. Biomaterials, 2023, 296: 122089.
80
Feng Y, Xu Y, Wen Z, et al. Cerium end-deposited gold nanorods-based photoimmunotherapy for boosting tumor immunogenicity [J]. Pharmaceutics, 2023, 15(4): 1309.
81
Chaux A, Cohen JS, Schultz L, et al. High epidermal growth factor receptor immunohistochemical expression in urothelial carcinoma of the bladder is not associated with EGFR mutations in exons 19 and 21: a study using formalin-fixed, paraffin-embedded archival tissues [J]. Human pathology, 2012, 43(10): 1590-1595.
82
Nagaya T, Okuyama S, Ogata F, et al. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody [J]. Oncotarget, 2018, 9(27): 19026-19038.
83
Kim J. Looking into the clinical application of CD47-targeted near-infrared photoimmunotherapy for human bladder cancer treatment [J]. Transl Androl Urol, 2019, 8(Suppl 3): S322-S324.
84
Kiss B, van den Berg NS, Ertsey R, et al. CD47-targeted near-infrared photoimmunotherapy for human bladder cancer [J]. Clin Cancer Res, 2019, 25(12): 3561-3571.
85
Yang Y, Yan X, Li J, et al. CD47-targeted optical molecular imaging and near-infrared photoimmunotherapy in the detection and treatment of bladder cancer [J]. Mol Ther Oncolytics, 2022, 24: 319-330.
86
Coleman R, Hadji P, Body JJ, et al. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org. Bone health in cancer: ESMO Clinical Practice Guidelines [J]. Ann Oncol, 2020, 31(12): 1650-1663.
87
Jimenez-Andrade JM, Mantyh WG, Bloom AP, et al. Bone cancer pain [J]. Ann N Y Acad Sci, 2010, 1198: 173-181.
88
Nakamura YA, Okuyama S, Furusawa A, et al. Near-infrared photoimmunotherapy through bone [J]. Cancer Sci, 2019, 110(12): 3689-3694.
89
Inagaki FF, Wakiyama H, Furusawa A, et al. Near-infrared photoimmunotherapy (NIR-PIT) of bone metastases [J]. Biomed Pharmacother, 2023, 160: 114390.
90
Nagaya T, Nakamura Y, Sato K, et al. Near infrared photoimmunotherapy of B-cell lymphoma [J]. Mol Oncol, 2016, 10(9): 1404-1414.
91
李莹, 胡德胜, 谭文勇. 光生物调节在管理抗肿瘤治疗毒性中的研究进展 [J]. 肿瘤防治研究, 2023, 50(10): 1004-1009.
92
Sato K, Watanabe R, Hanaoka H, et al. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy [J]. Oncotarget, 2016, 7(12): 14324-14335.
93
Pansare V, Hejazi S, Faenza W, et al. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers [J]. Chem Mater, 2012, 24(5): 812-827.
94
Nagaya T, Okuyama S, Ogata F, et al. Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination [J]. Gastric Cancer, 2019, 22(3): 463-472.
95
Mitsunaga M, Nakajima T, Sano K, et al. Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate [J]. Bioconjug Chem, 2012, 23(3): 604-609.
96
Tsukamoto T, Fujita Y, Shimogami M, et al. Inside-the-body light delivery system using endovascular therapy-based light illumination technology [J]. EBioMedicine, 2022, 85: 104289.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 卢菊, 赵胜, 范建华, 高艳多. 探讨IOTA、GI-RADS及O-RADS在附件肿瘤良恶性鉴别诊断中的价值[J]. 中华医学超声杂志(电子版), 2024, 21(05): 484-490.
[3] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[4] 田文. 甲状腺癌功能性根治颈淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 482-482.
[5] 王宇, 徐芳泉, 周旋, 姚晓峰, 李强. 不断提高分化型甲状腺癌根治性切除规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 473-476.
[6] 孙辉, 李长霖. 分化型甲状腺癌根治性切除术中的关键考量与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 477-481.
[7] 高一飞, 刘根祥, 孙长华, 周广军. 喉返神经监测在无充气腋窝入路腔镜单侧甲状腺切除+中央区淋巴结清扫术中的应用效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 483-486.
[8] 李云龙, 夏旭良, 江志强, 刘伟, 刘凯, 唐立, 刘昊中, 张思远. 三种方法治疗分化型甲状腺癌的临床疗效[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 487-489.
[9] 韩婧, 郝少龙, 康骅. 北京市单中心甲状腺癌患者临床特征的回顾分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 490-493.
[10] 高建新, 王啸飞, 于淼, 路夷平. 局部进展期直肠癌新辅助治疗后行ISR术远切缘距离的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 539-543.
[11] 周丽, 林巧. 腹腔镜TME与开腹手术治疗原发性直肠癌对患者近远期疗效及生存率的影响比较[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 544-546.
[12] 李阳, 董峰, 曾立鹏. 局部进展期直肠癌新辅助治疗后腹腔镜TaTME与TME中的对比研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 547-550.
[13] 郭曌蓉, 王歆光, 刘毅强, 何英剑, 王立泽, 杨飏, 汪星, 曹威, 谷重山, 范铁, 李金锋, 范照青. 不同亚型乳腺叶状肿瘤的临床病理特征及预后危险因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(06): 524-532.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 孙双权, 孙玮玮, 王勇, 方道成, 温晖. 肾脏混合性上皮和间质肿瘤一例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 512-515.
阅读次数
全文


摘要