1 |
Compérat E, Amin MB, Cathomas R, et al. Current best practice for bladder cancer: a narrative review of diagnostics and treatments [J].Lancet, 2022, 400(10364): 1712-1721.
|
2 |
李仔祥, 王苏贵, 张先云, 等. 肿瘤相关性巨噬细胞通过TNF-α/B7H3 调节人膀胱癌细胞增殖的研究 [J/OL]. 中华临床医师杂志(电子版), 2024, 18(1): 64-71.
|
3 |
邓世栋, 刘凌志, 郭大勇, 等. 沉默SNHG1 基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响 [J/OL]. 中华临床医师杂志(电子版), 2023, 17(7): 804-811.
|
4 |
彭龙飞, 汪鑫, 夏典, 等. 腹腔镜下腹膜外膀胱根治和原位新膀胱术的初步体会 [J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023,17(1): 7-10.
|
5 |
Ward Grados DF, Ahmadi H, Griffith TS, et al. Immunotherapy for bladder cancer: latest advances and ongoing clinical trials [J]. Immunol Invest, 2022, 51(8): 2226-2251.
|
6 |
Du W, Zhu J, Zeng Y, et al. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway [J]. Cell Death Differ, 2021, 28(4):1284-1300.
|
7 |
Abeditashi M, Weber JJ, Pereira Sena P, et al. KPNB1 modulates the Machado-Joseph disease protein ataxin-3 through activation of the mitochondrial protease CLPP [J]. Cell Mol Life Sci, 2022, 79(8): 401.
|
8 |
Cheung CY, Huang TT, Chow N, et al. Unconventional tonicityregulated nuclear trafficking of NFAT5 mediated by KPNB1, XPOT and RUVBL2 [J]. J Cell Sci, 2022, 135(13): jcs259280.
|
9 |
Shi Q, Lin M, Cheng X, et al. KPNB1-mediated nuclear import in cancer [J]. Eur J Pharmacol, 2023, 955: 175925.
|
10 |
Ye Z, Yang Y, Wei Y, et al. PCDH1 promotes progression of pancreatic ductal adenocarcinoma via activation of NF-κB signalling by interacting with KPNB1 [J]. Cell Death Dis, 2022, 13(7): 633.
|
11 |
Harsanyi S, Novakova ZV, Bevizova K, et al. Biomarkers of bladder cancer: cell-free DNA, epigenetic modifications and non-coding RNAs[J]. Int J Mol Sci, 2022, 23(21): 13206.
|
12 |
Shi ZD, Hao L, Han XX, et al. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer [J]. Mol Cancer, 2022, 21(1): 37.
|
13 |
Li X, Huang C, Zhang X, et al. Discovery of bladder cancer biomarkers in paired pre- and postoperative urine samples [J]. Transl Androl Urol, 2021, 10(8): 3402-3414.
|
14 |
Wang B, Yao J, Ma R, et al. The mutational landscape and prognostic indicators of pseudomyxoma peritonei originating from the ovary [J].Int J Cancer, 2021, 148(8): 2036-2047.
|
15 |
Zhang ZG, Shi ZD, Dong JJ, et al. Novel potential urinary biomarkers for effective diagnosis and prognostic evaluation of high-grade bladder cancer [J]. Transl Cancer Res, 2023, 12(8): 1992-2007.
|
16 |
Cao Y, Yan X, Bai X, et al. UCHL5 promotes proliferation and migration of bladder cancer cells by activating c-Myc via AKT/mTOR signaling [J]. Cancers (Basel), 2022, 14(22): 5538.
|
17 |
Ayala Soriano C, Benitez Barzaga M, Chhina A, et al. Hepatoid prostatic carcinoma with adrenal metastasis and novel genetic alterations [J]. Diagn Cytopathol, 2022, 50(11): E310-E314.
|
18 |
Huang X, Liu X, Du B, et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer [J].Aging (Albany NY), 2021, 13(15): 19230-19242.
|
19 |
Ye H, Zhang N. Identification of the upregulation of MRPL13 as a novel prognostic marker associated with overall survival time and immunotherapy response in breast cancer [J]. Comput Math Methods Med, 2021, 2021: 1498924.
|
20 |
Zhou J, Chen C, Zhao X, et al. Coding variants in the PCNT and CEP295 genes contribute to breast cancer risk in Chinese women [J].Pathol Res Pract, 2021, 225: 153581.
|
21 |
Zhu X, Li C, Gao Y, et al. The feedback loop of EFTUD2/c-MYC impedes chemotherapeutic efficacy by enhancing EFTUD2 transcription and stabilizing c-MYC protein in colorectal cancer [J]. J Exp Clin Cancer Res, 2024, 43(1): 7.
|
22 |
Lv C, Li XJ, Hao LX, et al. Over-activation of EFTUD2 correlates with tumor propagation and poor survival outcomes in hepatocellular carcinoma [J]. Clin Transl Oncol, 2022, 24(1): 93-103.
|
23 |
Ding W, Wang JX, Wu JZ, et al. Targeting proteasomal deubiquitinases USP14 and UCHL5 with b-AP15 reduces 5-fluorouracil resistance in colorectal cancer cells [J]. Acta Pharmacol Sin, 2023, 44(12): 2537-2548.
|
24 |
Liu S, Liu S, Yu Z, et al. STAT3 regulates antiviral immunity by suppressing excessive interferon signaling [J]. Cell Rep, 2023, 42(7):112806.
|
25 |
Cheng H, Hao Y, Gao Y, et al. PLCε promotes urinary bladder cancer cells proliferation through STAT3/LDHA pathway-mediated glycolysis[J]. Oncol Rep, 2019, 41: 2844-2854.
|
26 |
Zhang Y, Yu G, Chu H, et al. Macrophage-Associated PGK1 Phosphorylation Promotes Aerobic Glycolysis and Tumorigenesis [J].Mol Cell, 2018, 71: 201-215.
|
27 |
Jiang F, Ma S, Xue Y, et al. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer [J]. Biochem Biophys Res Commun, 2016, 469: 985-992.
|
28 |
Brand A, Singer K, Koehl GE, et al. LDHA-Associated lactic acid production blunts tumor immunosurveillance by T and NK cells [J].Cell Metab, 2016, 24(5): 657-671.
|
29 |
Sun C, Yu Z, Wang Y, et al. The importin protein karyopherin-β1 regulates the mice fibroblast-like synoviocytes inflammation via facilitating nucleus transportation of STAT3 transcription factor [J].Biochem Biophys Res Commun, 2016, 471(4): 553-559.
|