[1] |
王靖宇, 常宝成. 高尿酸血症/痛风流行病学特点及危险因素[J]. 国际内分泌代谢杂志, 2016, 36(2): 78-88.
|
[2] |
B L,T W,Hn Z, et al. The prevalence of hyperuricemia in China: a meta-analysis[J]. BMC Public Health, 2011, 11(1): 832-841.
|
[3] |
朱辟疆, 刁金囡. 尿酸性肾病的中西医研究和治疗进展[J]. 中国中西医结合肾病杂志, 2015, 16(1): 74-77.
|
[4] |
中国医师协会肾脏内科医师分会. 中国肾脏疾病高尿酸血症诊治的实践指南(2017版)[J]. 中华医学杂志, 2017, 97(25): 1927-1936.
|
[5] |
王海燕. 肾脏病学[M]. 3版. 北京: 人民卫生出版社, 2008: 1445.
|
[6] |
Wallace SL,Robinson H,Masi AT, et al. Preliminary criteria for the classification of the acute arthritis of primary gout[J]. Arthritis Rheum, 1977, 20(3): 895-900.
|
[7] |
许桂芳, 彭勇, 陈勇. 痛风患者血清中IL-37、IL-1β及IL-18水平检测及其相关性研究[J]. 温州医科大学学报, 2014, 44(5): 370-373.
|
[8] |
张冰清, 张昀, 曾学军. 痛风和高尿酸血症的遗传学背景[J]. 中华风湿病学杂志, 2015, 19(1): 61-63.
|
[9] |
丁健. 痛风性肾病的形成机制[J]. 现代实用医学, 2013, 25(8): 846-847.
|
[10] |
Wang Y,Bao X. Effects of uric acid on endothelial dysfunction in early chronic kidney disease and its mechanisms[J]. Eur J Med Res, 2013, 18: 26.
|
[11] |
Vandanmagsar B,Youm YH,Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17(2): 179-188.
|
[12] |
Pamela G,Nicolas R,Sabine C, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis[J]. Am J Respir Crit Care Med, 2008, 25(9): 903-913.
|
[13] |
李金凤, 谢笛, 何平平, 等. NLRP3炎性体与代谢性疾病的研究进展[J]. 生物化学与生物物理进展, 2014, 41(5): 425-434.
|
[14] |
Martinon F,Pétrilli V,Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome[J]. Nature, 2006, 440(7081): 237-241.
|
[15] |
Sidiropoulos PI,Goulielmos G,Voloudakis GK, et al. Inflammasomes and rheumatic diseases: evolving concepts[J]. Ann Rheum Dis, 2008, 67(10): 1382-1389.
|
[16] |
武东, 赵金霞, 孙琳, 等. 痛风炎症机制的研究进展[J]. 中华风湿病学杂志, 2014, 18(2): 128-130.
|
[17] |
Krishnan SM,Sobey CG,Latz E, et al. IL–1β and IL–18: inflammatory markers or mediators of hypertension?[J]. Br J Pharmacol, 2014, 171(24): 5589-5602.
|
[18] |
Chandrasekar B,Mummidi S,Mahimainathan L, et al. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappaB-and AP-1-mediated matrix metalloproteinase-9 expression and is inhibited by atorvastatin[J]. J Biol Chem, 2006, 281(22): 15099-15109.
|
[19] |
Jiménez-Altayó F,Briones AM,Giraldo J, et al. Increased superoxide anion production by interleukin-1beta impairs nitric oxide-mediated relaxation in resistance arteries[J]. J Pharmacol Exp Ther, 2006, 316(1): 42-52.
|
[20] |
Strowig T,Henao-Mejia J,Elinav E, et al. Inflammasomes in health and disease[J]. Nature, 2012, 481(7381): 278-286.
|