切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 160 -163. doi: 10.3877/cma.j.issn.1674-0785.2018.03.008

所属专题: 文献

综述

基因转导技术治疗心力衰竭的研究进展
尹志强1, 邢万红1,(), 马捷1, 杨建新2   
  1. 1. 030000 太原,山西医科大学附属第二医院心胸外科
    2. 030000 太原,山西医科大学附属第二医院麻醉科
  • 收稿日期:2017-08-08 出版日期:2018-02-01
  • 通信作者: 邢万红

Delivery strategies for gene therapy of chronic heart failure

Zhiqiang Yin1, Wanhong Xing1,(), Jie Ma1, Jianxin Yang2   

  1. 1. Department of Cardiothoracic Surgery, the Second Hospital of Shanxi Medical University, Taiyuan 030000, China
    2. Anesthesia, the Second Hospital of Shanxi Medical University, Taiyuan 030000, China
  • Received:2017-08-08 Published:2018-02-01
  • Corresponding author: Wanhong Xing
  • About author:
    Corresponding author: Xing Wanhong, Email:
引用本文:

尹志强, 邢万红, 马捷, 杨建新. 基因转导技术治疗心力衰竭的研究进展[J]. 中华临床医师杂志(电子版), 2018, 12(03): 160-163.

Zhiqiang Yin, Wanhong Xing, Jie Ma, Jianxin Yang. Delivery strategies for gene therapy of chronic heart failure[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(03): 160-163.

慢性心力衰竭(CHF)是构成全球人口发病率和病死率的主要原因,无论在经济方面还是社会方面都给人类带来了巨大的负担。目前,虽然常规治疗方法在降低心力衰竭病死率方面有着稳定和实质性的进展,但是新的药物以及常规心脏外科手术在延长5年生存率方面并没有取得满意的临床效果。基因治疗是在上世纪70年代随着重组DNA技术的发展而引入的。幸运的是,近年来随着基于载体的基因转导策略在动物模型以及初步临床试验中的应用,基因治疗可能会为CHF提供理想的替代治疗方案。20年来,研究者针对心力衰竭基因治疗的不同基因,不同信号转导通路和不同转导方式进行了大量研究。目前CHF基因治疗的主要目的是抑制心肌细胞凋亡,并通过最有效的心肌转染减少不良重塑和增加收缩力。在本文中,将总结多种心力衰竭模型中的基因转导技术,讨论这些转导策略在基于载体介导的心脏基因转导系统中的优势和不足,并着重论述基于外科方法的再循环转导技术。

Chronic heart failure (CHF) is still the leading cause of morbidity and mortality worldwide, causing a great economic burden to the society. Although conventional therapy has a substantial role in reducing mortality from heart failure, the efficacy of novel pharmacologic agents and surgery in extending the 5-year survival rate is not satisfactory. Therefore, it is necessary to develop new therapies for this disease. Gene therapy was introduced in 1970s with the development of recombinant DNA technology. Thanks to the recent progress in myocardial metabolism research and the application of vector based gene transfer strategies in animal models and humans, gene therapy would probably be an ideal treatment alternative for CHF. Over the last two decades, much research has been done about gene therapy for heart failure with regard to different genes, different signal transduction pathways, and different delivery methods. As a result, gene therapy of advanced heart failure has become possible. The main goal of gene therapy for CHF is to inhibit apoptosis, reduce the undesirable remodeling, and increase the contractility through the most efficient cardiomyocyte transfection. In this paper, we will review various gene transfer technologies in ischemic heart disease and heart failure models, and discuss the advantages and disadvantages of these strategies in vector-mediated cardiac gene delivery, with emphasis put on the cardiac surgery with recirculating delivery system, a high efficiency approach.

[1]
Katz MG, Fargnoli AS, Pritchette LA, et al. Gene delivery technologies for cardiac applications [J]. Gene Ther, 2012, 19(6): 659-669.
[2]
Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure [J]. N Engl J Med, 2001, 344(22): 1651-1658.
[3]
Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure [J]. N Engl J Med, 2001, 345(20): 1435-1443.
[4]
Hou J, Kang YJ. Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets [J]. Pharmacol Ther, 2012, 135(3): 337-354.
[5]
Wever-Pinzon O, Stehlik J, Kfoury AG, et al. Ventricular assist devices: pharmacological aspects of a mechanical therapy [J]. Pharmacol Ther, 2012, 134(2): 189-199.
[6]
Katz MG, Swain JD, Tomasulo CE, et al. Current strategies for myocardial gene delivery [J]. J Mol Cell Cardiol, 2011, 50(5): 766-776.
[7]
Fargnoli AS, Katz MG, Yarnall C, et al. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window [J]. J Card Fail, 2011, 17(8): 691-699.
[8]
Rengo G, Lymperopoulos A, Zincarelli C, et al. Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure [J]. Circulation, 2009, 119(1): 89-98.
[9]
Rengo G, Lymperopoulos A, Leosco D, et al. GRK2 as a novel gene therapy target in heart failure [J]. J Mol Cell Cardiol, 2011, 50(5): 785-792.
[10]
Katz MG, Fargnoli AS, Williams RD, et al. Safety and efficacy of high-dose adeno-associated virus 9 encoding sarcoplasmic reticulum Ca(2+) adenosine triphosphatase delivered by molecular cardiac surgery with recirculating delivery in ovine ischemic cardiomyopathy [J]. J Thorac Cardiovasc Surg, 2014, 148(3): 1065-1072, 1073e1061-1062; discussion1072-1073.
[11]
Kawase Y, Ladage D, Hajjar RJ. Rescuing the failing heart by targeted gene transfer [J]. J Am Coll Cardiol, 2011, 57(10): 1169-1180.
[12]
Katz MG, Fargnoli AS, Williams RD, et al. Surgical methods for cardiac gene transfer [J]. Future Cardiol, 2014, 10(3): 323-326.
[13]
Kornowski R, Fuchs S, Leon MB, et al. Delivery strategies to achieve therapeutic myocardial angiogenesis [J]. Circulation, 2000, 101(4): 454-458.
[14]
Katz MG, Fargnoli AS, Williams RD, et al. The road ahead: working towards effective clinical translation of myocardial gene therapies [J]. Ther Deliv, 2014, 5(1): 39-51.
[15]
Lazarous DF, Shou M, Stiber JA, et al. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution [J]. Cardiovasc Res, 1997, 36(1): 78-85.
[16]
Ladage D, Ishikawa K, Tilemann L, et al. Percutaneous methods of vector delivery in preclinical models [J]. Gene Ther, 2012, 19(6): 637-641.
[17]
Kawase Y, Ly HQ, Prunier F, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure [J]. J Am Coll Cardiol, 2008, 51(11): 1112-1119.
[18]
Raake PW, Hinkel R, Muller S, et al. Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors [J]. Gene Ther, 2008, 15(1): 12-17.
[19]
Boekstegers P, von Degenfeld G, Giehrl W, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins [J]. Gene Ther, 2000, 7(3): 232-240.
[20]
von Degenfeld G, Raake P, Kupatt C, et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia [J]. J Am Coll Cardiol, 2003, 42(6): 1120-1128.
[21]
Katz MG, Fargnoli AS, Bridges CR. Myocardial gene transfer: routes and devices for regulation of transgene expression by modulation of cellular permeability [J]. Hum Gene Ther, 2013, 24(4): 375-392.
[22]
Hoshino K, Kimura T, De Grand AM, et al. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres [J]. Gene Ther, 2006, 13(18): 1320-1327.
[23]
Byrne MJ, Power JM, Preovolos A, et al. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals [J]. Gene Ther, 2008, 15(23): 1550-1557.
[24]
Kaye DM, Preovolos A, Marshall T, et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals [J]. J Am Coll Cardiol, 2007, 50(3): 253-260.
[25]
Bridges CR. ′Recirculating cardiac delivery′ method of gene delivery should be called ′non-recirculating′ method [J]. Gene Ther, 2009, 16(7): 939-940.
[26]
Kaplitt MG, Xiao X, Samulski RJ, et al. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector [J]. Ann Thorac Surg, 1996, 62(6): 1669-1676.
[27]
Raake P, von Degenfeld G, Hinkel R, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery [J]. J Am Coll Cardiol, 2004, 44(5): 1124-1129.
[28]
Katz MG, Fargnoli AS, Kendle AP, et al. Molecular Cardiac Surgery with Recirculating Delivery (MCARD): Procedure and Vector Transfer [J]. Methods Mol Biol, 2017, 1521: 271-289.
[29]
Kupatt C, Wichels R, Deiss M, et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs [J]. Gene Ther, 2002, 9(8): 518-526.
[30]
Boekstegers P, Kupatt C. Current concepts and applications of coronary venous retroinfusion [J]. Basic Res Cardiol, 2004, 99(6): 373-381.
[31]
Giordano FJ. Retrograde coronary perfusion: a superior route to deliver therapeutics to the heart? [J]. J Am Coll Cardiol, 2003, 42(6): 1129-1131.
[32]
Katz MG, Fargnoli AS, Swain JD, et al. AAV6-betaARKct gene delivery mediated by molecular cardiac surgery with recirculating delivery (MCARD) in sheep results in robust gene expression and increased adrenergic reserve [J]. J Thorac Cardiovasc Surg, 2012, 143(3): 720-726.
[1] 郑永红, 蔡思媛, 项国剑, 黄海建, 叶志强, 张建成. β3肾上腺素能受体在慢性心力衰竭大鼠中高表达及可能机制[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 107-112.
[2] 马强, 敖强国, 张雅宾, 程庆砾. 腺相关病毒与肾小管靶向基因转导[J]. 中华肾病研究电子杂志, 2021, 10(02): 113-116.
[3] 唐红燕, 丹海俊, 高志红, 张作阳, 翟书梅, 吴少玉, 张玉. 心脏彩色多普勒超声在冠心病慢性心力衰竭患者临床诊断中的应用[J]. 中华临床医师杂志(电子版), 2022, 16(07): 676-679.
[4] 张敏, 王佐英, 吴海英, 刘蕊, 李拉拉, 陈光平, 曾莲, 赵东英, 刘微. 红细胞分布宽度与慢性心力衰竭预后的临床观察[J]. 中华临床医师杂志(电子版), 2021, 15(01): 43-46.
[5] 杨静, 沈鸿梅, 罗静. 综合护理干预对老年慢性心力衰竭患者负性情绪和生活质量影响[J]. 中华心脏与心律电子杂志, 2018, 06(04): 252-254.
[6] 袁晓丽. 人性化护理干预对老年冠心病并慢性心力衰竭患者生活质量和负性情绪的影响[J]. 中华心脏与心律电子杂志, 2018, 06(04): 246-248.
[7] 刘泳江, 张金铭. 华法林抗凝治疗对慢性心力衰竭患者心功能及血NT-proBNP水平的影响[J]. 中华心脏与心律电子杂志, 2018, 06(04): 209-211.
[8] 顾红莲. 慢性心力衰竭患者心脏标志物水平及超声心动图特点[J]. 中华心脏与心律电子杂志, 2018, 06(04): 204-208.
[9] 韩书锋. 养心生脉颗粒辅助治疗老年冠心病并发慢性心力衰竭效果观察[J]. 中华心脏与心律电子杂志, 2018, 06(03): 167-169.
[10] 胡大山. 小剂量螺内酯辅助治疗高龄冠心病合并慢性心力衰竭临床疗效观察[J]. 中华心脏与心律电子杂志, 2018, 06(02): 99-101.
[11] 杨丽萍, 严俊, 赵晓霞, 龚素梅, 张乐, 刘陇萍. 分级匹配+动态阶梯递增运动康复护理在慢性心力衰竭患者中的应用观察[J]. 中华心脏与心律电子杂志, 2018, 06(01): 59-62.
[12] 杨学凤. 舒适护理用于老年慢性心力衰竭患者临床护理中的作用探讨[J]. 中华心脏与心律电子杂志, 2017, 05(04): 248-249.
[13] 王正华, 田丹丹, 石颖. 老年慢性心力衰竭患者抗心力衰竭治疗后血浆脑利钠肽水平分布及影响因素分析[J]. 中华心脏与心律电子杂志, 2017, 05(04): 207-209.
[14] 李秀娟. 马来酸依那普利叶酸片治疗老年慢性心力衰竭对患者NT-pro BNP及Hcy水平影响分析[J]. 中华心脏与心律电子杂志, 2017, 05(04): 205-206.
[15] 李小龙, 万征. 缺血性心肌病心室肌细胞电重构的研究现状[J]. 中华心脏与心律电子杂志, 2017, 05(03): 178-182.
阅读次数
全文


摘要