[1] |
Katz MG, Fargnoli AS, Pritchette LA, et al. Gene delivery technologies for cardiac applications [J]. Gene Ther, 2012, 19(6): 659-669.
|
[2] |
Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure [J]. N Engl J Med, 2001, 344(22): 1651-1658.
|
[3] |
Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure [J]. N Engl J Med, 2001, 345(20): 1435-1443.
|
[4] |
Hou J, Kang YJ. Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets [J]. Pharmacol Ther, 2012, 135(3): 337-354.
|
[5] |
Wever-Pinzon O, Stehlik J, Kfoury AG, et al. Ventricular assist devices: pharmacological aspects of a mechanical therapy [J]. Pharmacol Ther, 2012, 134(2): 189-199.
|
[6] |
Katz MG, Swain JD, Tomasulo CE, et al. Current strategies for myocardial gene delivery [J]. J Mol Cell Cardiol, 2011, 50(5): 766-776.
|
[7] |
Fargnoli AS, Katz MG, Yarnall C, et al. A pharmacokinetic analysis of molecular cardiac surgery with recirculation mediated delivery of βARKct gene therapy: developing a quantitative definition of the therapeutic window [J]. J Card Fail, 2011, 17(8): 691-699.
|
[8] |
Rengo G, Lymperopoulos A, Zincarelli C, et al. Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure [J]. Circulation, 2009, 119(1): 89-98.
|
[9] |
Rengo G, Lymperopoulos A, Leosco D, et al. GRK2 as a novel gene therapy target in heart failure [J]. J Mol Cell Cardiol, 2011, 50(5): 785-792.
|
[10] |
Katz MG, Fargnoli AS, Williams RD, et al. Safety and efficacy of high-dose adeno-associated virus 9 encoding sarcoplasmic reticulum Ca(2+) adenosine triphosphatase delivered by molecular cardiac surgery with recirculating delivery in ovine ischemic cardiomyopathy [J]. J Thorac Cardiovasc Surg, 2014, 148(3): 1065-1072, 1073e1061-1062; discussion1072-1073.
|
[11] |
Kawase Y, Ladage D, Hajjar RJ. Rescuing the failing heart by targeted gene transfer [J]. J Am Coll Cardiol, 2011, 57(10): 1169-1180.
|
[12] |
Katz MG, Fargnoli AS, Williams RD, et al. Surgical methods for cardiac gene transfer [J]. Future Cardiol, 2014, 10(3): 323-326.
|
[13] |
Kornowski R, Fuchs S, Leon MB, et al. Delivery strategies to achieve therapeutic myocardial angiogenesis [J]. Circulation, 2000, 101(4): 454-458.
|
[14] |
Katz MG, Fargnoli AS, Williams RD, et al. The road ahead: working towards effective clinical translation of myocardial gene therapies [J]. Ther Deliv, 2014, 5(1): 39-51.
|
[15] |
Lazarous DF, Shou M, Stiber JA, et al. Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution [J]. Cardiovasc Res, 1997, 36(1): 78-85.
|
[16] |
Ladage D, Ishikawa K, Tilemann L, et al. Percutaneous methods of vector delivery in preclinical models [J]. Gene Ther, 2012, 19(6): 637-641.
|
[17] |
Kawase Y, Ly HQ, Prunier F, et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure [J]. J Am Coll Cardiol, 2008, 51(11): 1112-1119.
|
[18] |
Raake PW, Hinkel R, Muller S, et al. Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors [J]. Gene Ther, 2008, 15(1): 12-17.
|
[19] |
Boekstegers P, von Degenfeld G, Giehrl W, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins [J]. Gene Ther, 2000, 7(3): 232-240.
|
[20] |
von Degenfeld G, Raake P, Kupatt C, et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia [J]. J Am Coll Cardiol, 2003, 42(6): 1120-1128.
|
[21] |
Katz MG, Fargnoli AS, Bridges CR. Myocardial gene transfer: routes and devices for regulation of transgene expression by modulation of cellular permeability [J]. Hum Gene Ther, 2013, 24(4): 375-392.
|
[22] |
Hoshino K, Kimura T, De Grand AM, et al. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres [J]. Gene Ther, 2006, 13(18): 1320-1327.
|
[23] |
Byrne MJ, Power JM, Preovolos A, et al. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals [J]. Gene Ther, 2008, 15(23): 1550-1557.
|
[24] |
Kaye DM, Preovolos A, Marshall T, et al. Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals [J]. J Am Coll Cardiol, 2007, 50(3): 253-260.
|
[25] |
Bridges CR. ′Recirculating cardiac delivery′ method of gene delivery should be called ′non-recirculating′ method [J]. Gene Ther, 2009, 16(7): 939-940.
|
[26] |
Kaplitt MG, Xiao X, Samulski RJ, et al. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector [J]. Ann Thorac Surg, 1996, 62(6): 1669-1676.
|
[27] |
Raake P, von Degenfeld G, Hinkel R, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery [J]. J Am Coll Cardiol, 2004, 44(5): 1124-1129.
|
[28] |
Katz MG, Fargnoli AS, Kendle AP, et al. Molecular Cardiac Surgery with Recirculating Delivery (MCARD): Procedure and Vector Transfer [J]. Methods Mol Biol, 2017, 1521: 271-289.
|
[29] |
Kupatt C, Wichels R, Deiss M, et al. Retroinfusion of NFkappaB decoy oligonucleotide extends cardioprotection achieved by CD18 inhibition in a preclinical study of myocardial ischemia and retroinfusion in pigs [J]. Gene Ther, 2002, 9(8): 518-526.
|
[30] |
Boekstegers P, Kupatt C. Current concepts and applications of coronary venous retroinfusion [J]. Basic Res Cardiol, 2004, 99(6): 373-381.
|
[31] |
Giordano FJ. Retrograde coronary perfusion: a superior route to deliver therapeutics to the heart? [J]. J Am Coll Cardiol, 2003, 42(6): 1129-1131.
|
[32] |
Katz MG, Fargnoli AS, Swain JD, et al. AAV6-betaARKct gene delivery mediated by molecular cardiac surgery with recirculating delivery (MCARD) in sheep results in robust gene expression and increased adrenergic reserve [J]. J Thorac Cardiovasc Surg, 2012, 143(3): 720-726.
|