切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 164 -167. doi: 10.3877/cma.j.issn.1674-0785.2018.03.009

所属专题: 文献

综述

自噬在肿瘤中作用的分子机制研究进展
付婷婷1, 易善永2,(), 赵玲2   
  1. 1. 450006 郑州大学附属郑州市中心医院RICU
    2. 450006 郑州大学附属郑州市中心医院肿瘤科
  • 收稿日期:2017-09-18 出版日期:2018-02-01
  • 通信作者: 易善永

Molecular mechanisms of autophagy in cancers

Tingting Fu1, Shanyong Yi2,(), Ling Zhao2   

  1. 1. Department of RICU, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450006, China
    2. Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450006, China
  • Received:2017-09-18 Published:2018-02-01
  • Corresponding author: Shanyong Yi
  • About author:
    Corresponding author: Yi Shanyong, Email:
引用本文:

付婷婷, 易善永, 赵玲. 自噬在肿瘤中作用的分子机制研究进展[J]. 中华临床医师杂志(电子版), 2018, 12(03): 164-167.

Tingting Fu, Shanyong Yi, Ling Zhao. Molecular mechanisms of autophagy in cancers[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(03): 164-167.

自噬在饥饿时被诱导以捕获和降解胞内的蛋白质和细胞器,该过程使细胞内组分再循环以维持其代谢和生存需求。自噬也通过控制蛋白质和细胞器的数量和质量维持自身稳态。自噬功能失调导致许多疾病。在肿瘤形成增殖过程中自噬的作用是由多种因素共同决定。自噬在肿瘤中的作用可能是中立的,也可能是抑制肿瘤或者促进肿瘤生长。本文旨在对自噬在肿瘤形成生长中作用机制进行阐述总结,为肿瘤新治疗靶点研发提供线索。

Autophagy aims to capture and degrade intracellular proteins and organelles, which is induced by starvation and recycles intracellular components to sustain metabolism and survival. Autophagy maintains homeostasis by controlling protein and organelle quality and quantity. Many diseases can be attributed to dysfunctional autophagy. The role of autophagy in cancer is determined by many factors, and autophagy can be neutral, tumor-suppressive, or tumor-promoting in different contexts in cancers. Here we summarize the molecular mechanisms involved in autophagy in cancers and review the potential treatment targets for cancers.

[1]
Liu G, Pei F, Yang F, et al. Role of autophagy and apoptosis in non-small-cell lung cancer [J]. Int J Mol Sci, 2017, 18(2). pii: E367.
[2]
范涛,耿庆,汪巍, 等. 自噬及其在肺部疾病中作用研究进展 [J]. 现代生物医学进展, 2017, 3(17): 567-571.
[3]
Anding AL, Baehrecke EH. Cleaning house: selective autophagy of organelles [J]. Dev Cell, 2017, 41(1): 10-22.
[4]
Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy [J]. Cell Mol Life Sci, 2016, 73(4): 775-795.
[5]
Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy [J]. Nature, 2015, 524(7565): 309-314.
[6]
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer [J]. Genes Dev, 2016, 30(17): 1913-1930.
[7]
Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors [J]. Cancer Res, 2005, 65(8): 3336-3346.
[8]
Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy [J]. Science, 2011, 331(6016): 456-461.
[9]
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling [J]. Cell, 2008, 134(3): 451-460.
[10]
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues [J]. Cell, 2011, 147(4): 728-741.
[11]
Liu J, Xia H, Kim M, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 [J]. Cell, 2011, 147(1): 223-234.
[12]
White E. Deconvoluting the context-dependent role for autophagy in cancer [J]. Nat Rev Cancer, 2012, 12(6): 401-410.
[13]
Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor [J]. FEBS J, 2015, 282(24): 4672-4678.
[14]
Umemura A, He F, Taniguchi K, et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells [J]. Cancer Cell, 2016, 29(6): 935-948.
[15]
Karantza-Wadsworth V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis [J]. Genes Dev, 2007, 21(13): 1621-1635.
[16]
Guo JY, Karsli-Uzunbas G, Mathew R, et al. Autophagy suppresses progression of Kras-induced lung tumors to oncocytomas and maintains lipid homeostasis [J]. Genes Dev, 2013, 27(13): 1447-1461.
[17]
Guo JY, Teng X, Laddha SV, et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells [J]. Genes Dev, 2016, 30(15): 1704-1717.
[18]
Sharifi MN, Mowers EE, Drake LE, et al. Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3 [J]. Cell Rep, 2016, 15(8): 1660-1672.
[19]
Miyake N, Chikumi H, Takata M, et al. Rapamycin induces p53-independent apoptosis through the mitochondrial pathway in non-small cell lung cancer cells [J]. Oncol Rep, 2012, 28(3): 848-854.
[20]
Kim KW, Moretti L, Mitchell LR, et al. Combined Bcl-2/mammalian target of rapamycin inhibition leads to enhanced radiosensitization via induction of apoptosis and autophagy in non-small cell lung tumor xenograft model [J]. Clin Cancer Res, 2009, 15(19): 6096-6105.
[21]
Gorzalczany Y, Gilad Y, Amihai D, et al. Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer [J]. Cancer Lett, 2011, 310(2): 207-215.
[22]
Lazarus MB, Shokat KM. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1 [J]. Bioorg Med Chem, 2015, 23(17): 5483-5488.
[23]
Ronan B, Flamand O, Vescovi L, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy [J]. Nat Chem Biol, 2014, 10(12): 1013-1019.
[24]
Akin D, Wang SK, Habibzadegah-Tari P, et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors [J]. Autophagy, 2014, 10(11): 2021-2035.
[25]
Rangwala R, Chang YC, Hu J, et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma [J]. Autophagy, 2014, 10(8): 1391-1402.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[5] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[6] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[7] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[8] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[9] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[10] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[11] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[12] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[13] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[14] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[15] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
阅读次数
全文


摘要