切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 164 -167. doi: 10.3877/cma.j.issn.1674-0785.2018.03.009

所属专题: 文献

综述

自噬在肿瘤中作用的分子机制研究进展
付婷婷1, 易善永2,(), 赵玲2   
  1. 1. 450006 郑州大学附属郑州市中心医院RICU
    2. 450006 郑州大学附属郑州市中心医院肿瘤科
  • 收稿日期:2017-09-18 出版日期:2018-02-01
  • 通信作者: 易善永

Molecular mechanisms of autophagy in cancers

Tingting Fu1, Shanyong Yi2,(), Ling Zhao2   

  1. 1. Department of RICU, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450006, China
    2. Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450006, China
  • Received:2017-09-18 Published:2018-02-01
  • Corresponding author: Shanyong Yi
  • About author:
    Corresponding author: Yi Shanyong, Email:
引用本文:

付婷婷, 易善永, 赵玲. 自噬在肿瘤中作用的分子机制研究进展[J/OL]. 中华临床医师杂志(电子版), 2018, 12(03): 164-167.

Tingting Fu, Shanyong Yi, Ling Zhao. Molecular mechanisms of autophagy in cancers[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(03): 164-167.

自噬在饥饿时被诱导以捕获和降解胞内的蛋白质和细胞器,该过程使细胞内组分再循环以维持其代谢和生存需求。自噬也通过控制蛋白质和细胞器的数量和质量维持自身稳态。自噬功能失调导致许多疾病。在肿瘤形成增殖过程中自噬的作用是由多种因素共同决定。自噬在肿瘤中的作用可能是中立的,也可能是抑制肿瘤或者促进肿瘤生长。本文旨在对自噬在肿瘤形成生长中作用机制进行阐述总结,为肿瘤新治疗靶点研发提供线索。

Autophagy aims to capture and degrade intracellular proteins and organelles, which is induced by starvation and recycles intracellular components to sustain metabolism and survival. Autophagy maintains homeostasis by controlling protein and organelle quality and quantity. Many diseases can be attributed to dysfunctional autophagy. The role of autophagy in cancer is determined by many factors, and autophagy can be neutral, tumor-suppressive, or tumor-promoting in different contexts in cancers. Here we summarize the molecular mechanisms involved in autophagy in cancers and review the potential treatment targets for cancers.

[1]
Liu G, Pei F, Yang F, et al. Role of autophagy and apoptosis in non-small-cell lung cancer [J]. Int J Mol Sci, 2017, 18(2). pii: E367.
[2]
范涛,耿庆,汪巍, 等. 自噬及其在肺部疾病中作用研究进展 [J]. 现代生物医学进展, 2017, 3(17): 567-571.
[3]
Anding AL, Baehrecke EH. Cleaning house: selective autophagy of organelles [J]. Dev Cell, 2017, 41(1): 10-22.
[4]
Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy [J]. Cell Mol Life Sci, 2016, 73(4): 775-795.
[5]
Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy [J]. Nature, 2015, 524(7565): 309-314.
[6]
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer [J]. Genes Dev, 2016, 30(17): 1913-1930.
[7]
Takeuchi H, Kondo Y, Fujiwara K, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors [J]. Cancer Res, 2005, 65(8): 3336-3346.
[8]
Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy [J]. Science, 2011, 331(6016): 456-461.
[9]
Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling [J]. Cell, 2008, 134(3): 451-460.
[10]
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues [J]. Cell, 2011, 147(4): 728-741.
[11]
Liu J, Xia H, Kim M, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13 [J]. Cell, 2011, 147(1): 223-234.
[12]
White E. Deconvoluting the context-dependent role for autophagy in cancer [J]. Nat Rev Cancer, 2012, 12(6): 401-410.
[13]
Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor [J]. FEBS J, 2015, 282(24): 4672-4678.
[14]
Umemura A, He F, Taniguchi K, et al. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells [J]. Cancer Cell, 2016, 29(6): 935-948.
[15]
Karantza-Wadsworth V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis [J]. Genes Dev, 2007, 21(13): 1621-1635.
[16]
Guo JY, Karsli-Uzunbas G, Mathew R, et al. Autophagy suppresses progression of Kras-induced lung tumors to oncocytomas and maintains lipid homeostasis [J]. Genes Dev, 2013, 27(13): 1447-1461.
[17]
Guo JY, Teng X, Laddha SV, et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells [J]. Genes Dev, 2016, 30(15): 1704-1717.
[18]
Sharifi MN, Mowers EE, Drake LE, et al. Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3 [J]. Cell Rep, 2016, 15(8): 1660-1672.
[19]
Miyake N, Chikumi H, Takata M, et al. Rapamycin induces p53-independent apoptosis through the mitochondrial pathway in non-small cell lung cancer cells [J]. Oncol Rep, 2012, 28(3): 848-854.
[20]
Kim KW, Moretti L, Mitchell LR, et al. Combined Bcl-2/mammalian target of rapamycin inhibition leads to enhanced radiosensitization via induction of apoptosis and autophagy in non-small cell lung tumor xenograft model [J]. Clin Cancer Res, 2009, 15(19): 6096-6105.
[21]
Gorzalczany Y, Gilad Y, Amihai D, et al. Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer [J]. Cancer Lett, 2011, 310(2): 207-215.
[22]
Lazarus MB, Shokat KM. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1 [J]. Bioorg Med Chem, 2015, 23(17): 5483-5488.
[23]
Ronan B, Flamand O, Vescovi L, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy [J]. Nat Chem Biol, 2014, 10(12): 1013-1019.
[24]
Akin D, Wang SK, Habibzadegah-Tari P, et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors [J]. Autophagy, 2014, 10(11): 2021-2035.
[25]
Rangwala R, Chang YC, Hu J, et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma [J]. Autophagy, 2014, 10(8): 1391-1402.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要