切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (04) : 232 -237. doi: 10.3877/cma.j.issn.1674-0785.2018.04.009

所属专题: 文献

基础研究

钆塞酸二钠增强MR纵向弛豫时间定量成像及弥散加权成像评价肝纤维化的对比研究
盛若凡1, 金开璞1, 汪禾青1, 杨丽1, 纪元2, 曾蒙苏1,()   
  1. 1. 200032 上海,复旦大学附属中山医院放射科 上海市影像医学研究所
    2. 200032 上海,复旦大学附属中山医院病理科
  • 收稿日期:2018-01-01 出版日期:2018-02-15
  • 通信作者: 曾蒙苏
  • 基金资助:
    国家自然科学基金青年基金项目(81601488); 上海市科学技术委员会"扬帆计划"项目(16YF1410600)

A comparative study of gadoxetic acid enhanced T1-mapping and diffusion-weighted imaging in assessing liver fibrosis

Ruofan Sheng1, Kaipu Jin1, Heqing Wang1, Li Yang1, Yuan Ji2, Mengsu Zeng1,()   

  1. 1. Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, Shanghai 200032, China
    2. Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
  • Received:2018-01-01 Published:2018-02-15
  • Corresponding author: Mengsu Zeng
  • About author:
    Corresponding author: Zeng Mengsu, Email:
引用本文:

盛若凡, 金开璞, 汪禾青, 杨丽, 纪元, 曾蒙苏. 钆塞酸二钠增强MR纵向弛豫时间定量成像及弥散加权成像评价肝纤维化的对比研究[J]. 中华临床医师杂志(电子版), 2018, 12(04): 232-237.

Ruofan Sheng, Kaipu Jin, Heqing Wang, Li Yang, Yuan Ji, Mengsu Zeng. A comparative study of gadoxetic acid enhanced T1-mapping and diffusion-weighted imaging in assessing liver fibrosis[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(04): 232-237.

目的

评估钆塞酸二钠增强MR纵向弛豫时间定量成像(T1-mapping)对肝纤维化的分级诊断价值,并进一步与扩散加权成像(DWI)进行对比。

方法

建立SD大鼠四氯化碳肝纤维化模型,分为肝纤维化模型组(24只)和正常对照组(6只)。模型组大鼠分为4个亚组,每组6只,皮下注射50%四氯化碳植物油溶液,4个亚组分别注射2、4、6、8周;对照组皮下注射等量橄榄油。对所有大鼠进行钆塞酸二钠增强T1-mapping及DWI成像,测定肝胆特异期(HBP)T1弛豫时间、增强前后T1弛豫时间下降率(Δ%)及表观弥散系数(ADC),并进行肝纤维化病理分级诊断。采用Spearman相关分析评估T1弛豫时间及ADC值与纤维化分级间相关性,采用单因素方差分析(Δ%-T1弛豫时间)或Kruskal-Wallis检验(HBP-T1弛豫时间及ADC值)比较不同肝纤维化分级组间参数差异,进一步采用ROC曲线评估T1弛豫时间及ADC值对轻度-重度肝纤维化、非肝硬化-肝硬化的诊断效能。

结果

本研究纳入F0~F4级大鼠各6,5,7,5,7只。不同纤维化等级间HBP-T1、Δ%-T1弛豫时间及ADC值比较,差异具有统计学意义(χ2=25.21,P<0.001;F=19.37,P<0.001;χ2=18.50,P=0.001)。HBP-T1弛豫时间与纤维化分级呈强正相关性(r=0.927,P<0.001),Δ%-T1弛豫时间及ADC值与纤维化分级呈负相关(r=-0.892,P<0.001及r=-0.778,P<0.001)。HBP-T1弛豫时间及Δ%-T1弛豫时间判断轻重度纤维化比ADC具有更大的曲线下面积(0.949 vs 0.944 vs 0.842),但差异无统计学意义(Z=0.343、1.495,P=0.135、0.732);HBP-T1弛豫时间及Δ%-T1弛豫时间在肝硬化判断上较ADC亦具有更大的曲线下面积(0.988 vs 0.957 vs 0.804),差异具有统计学意义(Z=2.202,P=0.028;Z=2.004,P=0.045)。

结论

钆塞酸二钠增强T1-mapping成像能较好地评估肝纤维化程度,优于传统DWI成像。

Objective

To evaluate the diagnostic value of gadoxetic acid enhanced magnetic resonance T1-mapping in assessing liver fibrosis by comparing with diffusion weighted imaging (DWI).

Methods

Thirty rats were divided into a CCl4-induced fibrosis group (n=24) and a control group (n=6). The rats in the fibrosis group were further randomly divided into four subgroups (n=6 each) and administered with 50% CCl4 intraperitoneally for 2, 4, 6, and 8 weeks, respectively. Rats in the control group were administered with the same dose of olive oil. Gadoxetic acid enhanced T1-mapping and DWI were performed, and the hepatobiliary phase (HBP) T1 relaxation time, reduction rate (Δ%), and apparent diffusion coefficient (ADC) were calculated. Spearman correlation analysis was used to assess the correlation between T1 relaxation time, ADC, and fibrosis stage (F), and one-way ANOVA (Δ%-T1) or Kruskal-Wallis test (HBP-T1 and ADC) was used to compare MR parameters between different fibrosis stages. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of T1 relaxation time and ADC in discriminating F≥3 and cirrhosis.

Results

A total of 6, 5, 7, 5, and 7 rats were diagnosed with F0 to F4, respectively. HBP-T1, Δ%-T1 relaxation time, and ADC differed significantly between fibrosis stages (χ2=25.21, P<0.001; F=19.37, P<0.001; χ2=18.50, P=0.001). HBP relaxation time was positively correlated with fibrosis stage (r=0.927, P<0.001), while Δ%-T1 relaxation time and ADC were negatively related to fibrosis stage (r=-0.892, P<0.001; r=-0.778, P<0.001). ROC analysis demonstrated the areas under the curves of HBP and Δ% T1 relaxation time were larger than that of ADC (0.949 vs 0.944 vs 0.842) for identifying mild and severe fibrosis, but there was no statistical difference (Z=0.343, 1.495; P=0.135, 0.732); however, for non-cirrhosis and cirrhosis (0.988 vs 0.957 vs 0.804), there was a significant difference (Z=2.202, P=0.028; Z=2.004, P=0.045).

Conclusion

Gadoxetic acid enhanced T1-mapping may have higher value than conventional DWI in assessing liver fibrosis.

图3 ADC图感兴趣区域(ROI)选取于肝组织最大层面肝右叶、中叶及左叶分别选取3处ROI,面积约15 mm2
图4~7 肝纤维化的病理图片(Masson染色,×40)图4为纤维化分级F1级,汇管区扩大,但未形成间隔;图5为F2级,汇管区周围纤维化,可见少量间隔形成;图6为F3级,大量纤维间隔形成,无明显肝硬化;图7为F4级:肝硬化
表1 不同肝纤维化等级T1弛豫时间与ADC值结果比较
表2 HBP-T1、Δ%-T1及ADC对轻-重度肝纤维化的诊断效能
图8 肝胆特异期T1弛豫时间(HBP-T1)、增强前后T1弛豫时间下降率(Δ%-T1)及表观弥散系数(ADC)对轻度(F≤2)和重度(F≥3)肝纤维化诊断的ROC曲线HBP-T1、Δ%-T1与ADC间诊断效能比较差异无统计学意义(Z=0.343、1.495,P=0.135、0.732)
表3 HBP-T1、Δ%-T1及ADC对肝硬化的诊断效能
图9 肝胆特异期T1弛豫时间(HBP-T1)、增强前后T1弛豫时间下降率(Δ%-T1)及表观弥散系数(ADC)对非肝硬化(F0~3)和肝硬化(F4)诊断的ROC曲线 HBP-T1及Δ%-T1较ADC具有更高的诊断效能(Z=2.202,P=0.028;Z=2.004,P=0.045)
[1]
Faria SC, Ganesan K, Mwangi I, et al. MR imaging of liver fibrosis: current state of the art [J]. Radiographics, 2009, 29(6): 1615-1636.
[2]
Van Beers BE, Pastor CM, Hussain HK. Primovist, eovist: what to expect? [J]. J Hepatol, 2012, 57(2): 421-429.
[3]
Ding Y, Rao SX, Meng T, et al. Usefulness of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging in assessment of non-alcoholic fatty liver disease [J]. Eur Radiol, 2014, 24(4): 959-966.
[4]
Feier D, Balassy C, Bastati N, et al. Liver Fibrosis: Histopathologic and biochemical influences on diagnostic efficacy of hepatobiliary contrast-enhanced MR imaging in staging [J]. Radiology, 2013, 269(2): 459-467.
[5]
徐佳,王萱,金征宇. 增强MRI定量评价肝纤维化及肝功能的研究进展 [J]. 中华放射学杂志, 2016, 50(12): 994-996.
[6]
赵广强,翁苓苓,陈义磊, 等. 弥散加权成像与弥散张量成像评价肝纤维化的实验研究 [J]. 医学影像学杂志, 2016, 26(1): 99-104.
[7]
Bakan AA, Inci E, Bakan S, et al. Utility of diffusion-weighted imaging in the evaluation of liver fibrosis [J]. Eur Radiol, 2012, 22(3): 682-687.
[8]
Lagadec M, Doblas S, Giraudeau C, et al. Advanced fibrosis: correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver [J]. Radiology, 2015, 274(2): 379-386.
[9]
Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C [J]. Hepatology, 1996, 24(2): 289-293.
[10]
Delong ER, Delong DM, Clarkepearson DI. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach [J]. Biometrics, 1988, 44(3): 837-845.
[11]
金博. 肝硬化是可以逆转的吗? [J/CD]. 中华临床医师杂志(电子版), 2015, 9(10): 5-9.
[12]
Nishie A, Asayama Y, Ishigami K, et al. MR prediction of liver fibrosis using a liver-specific contrast agent: Superparamagnetic iron oxide versus Gd-EOB-DTPA [J]. J Magn Reson Imaging, 2012, 36(3): 664-671.
[13]
陈永鹏,汪艳,侯金林. 肝纤维化/肝硬化的动态变化及其诊断进展 [J]. 中华肝脏病杂志, 2015, 23(4): 244-246.
[14]
Banerjee R, Pavlides M, Tunnicliffe EM, et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease [J]. J Hepatol, 2014, 60(1): 69-77.
[15]
Ding Y, Rao SX, Zhu T, et al. Liver fibrosis staging using T1 mapping on gadoxetic acid-enhanced MRI compared with DW imaging [J]. Clin Radiol, 2015, 70(10): 1096-1103.
[16]
Yang L, Ding Y, Rao S, et al. Staging liver fibrosis in chronic hepatitis B with T-1 relaxation time index on gadoxetic acid-enhanced MRI: Comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4 [J]. J Magn Reson Imaging, 2017, 45(4): 1186-1194.
[17]
Besa C, Bane O, Jajamovich G, et al. 3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function [J]. Magn Reson Imaging, 2015, 33(9): 1075-1082.
[18]
Shenoy-Bhangle A, Baliyan V, Kordbacheh H, et al. Diffusion weighted magnetic resonance imaging of liver: Principles, clinical applications and recent updates [J]. World J Hepatol, 2017, 9(26): 1081-1091.
[19]
Yoon JH, Lee JM, Baek JH, et al. Evaluation of hepatic fibrosis using intravoxel incoherent motion in diffusion-weighted liver MRI [J]. J Comput Assist Tomogr, 2014, 38(1): 110-116.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[3] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[4] 刘冰茹, 刘皓希, 陈莹, 赖世伟, 陈蓉. 疑似乳腺癌的韧带样纤维瘤病一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 314-317.
[5] 叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪, 叶娴. 基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 229-237.
[6] 方心俞, 黄昌瑜, 胡洪新, 林溢铭, 陈旸, 张楠心, 张文明. 膝关节软骨下不全骨折的治疗选择与疗效分析[J]. 中华关节外科杂志(电子版), 2023, 17(04): 583-587.
[7] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[8] 李全喜, 唐辉军, 张健生, 杨飞. 基于MUSE-DWI与SS-DWI技术在前列腺癌图像中的对比研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 553-557.
[9] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[10] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[11] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[12] 胡宝茹, 尚乃舰, 高迪. 中晚期肝细胞癌的DCE-MRI及DWI表现与免疫治疗预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 399-403.
[13] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[14] 王志文, 郑雪梅, 张庆坤, 王海江. 自发性低颅压综合征75例临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 398-401.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要