切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (09) : 518 -524. doi: 10.3877/cma.j.issn.1674-0785.2018.09.008

所属专题: 文献

基础研究

p53在低氧抑制人牙周膜成纤维细胞成骨分化中的作用
张叶1, 庄秀妹2,(), 张越1, 王勤1, 彭雪珍1   
  1. 1. 518026 深圳,深圳市儿童医院口腔科
    2. 510120 广州,中山大学附属孙逸仙纪念医院口腔科
  • 收稿日期:2018-04-05 出版日期:2018-05-01
  • 通信作者: 庄秀妹
  • 基金资助:
    国家自然科学基金青年基金项目(81600899)

Hypoxia inhibits osteogenic differentiation of human periodontal ligament cells via p53 upregulation

Ye Zhang1, Xiumei Zhuang2,(), Yue Zhang1, Qin Wang1, Xuezhen Peng1   

  1. 1. Department of Stomatology, Shenzhen Children’s Hospital, Shenzhen 518026, China
    2. Department of Stomatology, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Guangzhou 510120, China
  • Received:2018-04-05 Published:2018-05-01
  • Corresponding author: Xiumei Zhuang
  • About author:
    Corresponding author: Zhuang Xiumei, E-mail:
引用本文:

张叶, 庄秀妹, 张越, 王勤, 彭雪珍. p53在低氧抑制人牙周膜成纤维细胞成骨分化中的作用[J]. 中华临床医师杂志(电子版), 2018, 12(09): 518-524.

Ye Zhang, Xiumei Zhuang, Yue Zhang, Qin Wang, Xuezhen Peng. Hypoxia inhibits osteogenic differentiation of human periodontal ligament cells via p53 upregulation[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(09): 518-524.

目的

探讨p53在低氧抑制人牙周膜成纤维细胞(PDLCs)成骨分化中的作用。

方法

体外正常氧(20% O2)和低氧(1% O2)中培养PDLCs细胞48 h,Western免疫印迹检测12、24与48 h时p53与HIF-1α的表达水平;小干扰RNA(Si-HIF1α)转染PDLCs,验证敲低HIF-1α表达后p53水平变化;进一步通过小干扰RNA(Si-p53)转染PDLCs,检测低氧下PDLCs中p53表达水平,比较碱性磷酸酶(ALP)活性,成骨标志物ALP、I型胶原(COL1)、成骨特异性转录因子(RUNX2)的mRNA表达量变化。采用SPSS 13.0软件对数据进行统计学分析。

结果

相比正常氧培养后HIF-1α/GAPDH蛋白比值0.309±0.052,PDLCs在低氧培养12、24、48 h后HIF-1α/GAPDH蛋白水平显著升高为0.801±0.049、0.881±0.037与0.936±0.039,差异具有统计学意义(t=6.901、9.041、9.704,P=0.002、0.0008、0.0006);同时p53/GAPDH蛋白比值分别为0.463±0.036、0.612±0.040与0.858±0.034,相较常氧的0.233±0.035显著上调,差异具有统计学意义(t=4.595、7.140、12.84,P=0.010、0.002、0.0002)。Si-HIF1α转染PDLCs并在低氧培养后,HIF1α-Si1、Si2转染组比阴性NC-Si组的HIF-1α在蛋白水平分别下降64.57%与59.94%,在mRNA水平分别下降66.67%、63.67%,差异具有统计学意义(t蛋白=9.326、6.985,P蛋白=0.0007、0.002;tRNA=5.319、5.015,PRNA=0.006、0.008);同时p53在蛋白水平分别下降36.47%与38.41%,在mRNA水平分别下降33.43%、30.67%,差异具有统计学意义(t蛋白=4.645、4.135,P蛋白=0.011、0.029;tRNA=4.373、3.912,PRNA=0.012、0.017)。PDLCs经p53-Si1、Si2转染后p53蛋白表达较NC-Si阴性组分别下降56.41%与51.24%,差异具有统计学意义(t=8.194、6.621,P=0.0012、0.0027),但HIF-1α蛋白水平无明显变化,差异无统计学意义(t=1.167、1.391,P=0.308、0.237)。将PDLCs转染p53-siRNA后继续在低氧培养48 h,p53-Si1、Si2组中PDLCs的ALP活性较NC-Si组升高2.05倍与2.17倍,差异具有统计学意义(t=4.889、4.346,P=0.008、0.012);成骨标志物ALP的mRNA水平分别升高2.14倍与2.05倍,差异具有统计学意义(t=5.423、4.078,P=0.006、0.015);COL1的mRNA水平分别升高2.86倍与3.03倍,差异具有统计学意义(t=7.56、6.89,P=0.002、0.002);RUNX2的mRNA水平分别升高3.41倍与3.71倍,差异具有统计学意义(t=8.15、12.21,P=0.001、0.0003)。

结论

低氧可上调HIF-1α与p53表达,进而抑制PDLCs成骨分化。

Objective

To investigate the role of p53 in hypoxia induced inhibition of osteogenic differentiation of periodontal ligament cells (PDLCs).

Methods

PDLCs were cultured under hypoxia (1% O2) or normoxia (20% O2) for 48 h. Western blot was used to detect the expression of p53 and HIF-1α at 12, 24, and 48 h. After transfection with siRNAs targeting HIF-1α (Si-HIF1α), HIF-1α and p53 expression was furthered detected. After transfection with siRNAs targeting p53 (Si-p53), p53 and HIF-1α expression, changes of alkaline phosphatase (ALP) activity, and mRNA expression of osteogenic markers ALP, collagen-I (COL1), and runt related transcription factor 2 (RUNX2) were detected to evaluate osteogenic differentiation of PDLCs under hypoxia. The data were statistically analyzed with SPSS 13.0 software package.

Results

Compared with the value (0.309±0.052) under normoixa, the relative expression of HIF-1α to GAPDH protein in PDLCs under hypoxia for 12, 24 and 48 h was significantly increased to 0.801±0.049, 0.881±0.037, and 0.936±0.039, respectively (t=6.901, 9.041, and 9.704; P=0.002, 0.0008, and 0.0006). The relative expression of p53 to GAPDH protein in PDLCs was significantly increased from 0.233±0.035 under normoixa to 0.463±0.036, 0.612±0.040, and 0.858±0.034 under hypoxia for 12, 24, and 48 h, respectively (t=4.595, 7.140, and 12.84; P=0.010, 0.002, and 0.0002). After PDLCs were transfected with Si-HIF1α and further cultured under hypoxia, HIF-1α expression in the HIF1α-Si1 and HIF1α-Si2 groups was significantly decreased by 64.57% and 59.94% at the protein level, and by 66.67% and 63.67% at the mRNA level compared with the NC-Si group, respectively (tprotein=9.326 and 6.985, Pprotein=0.0007 and 0.002; tRNA=5.319 and 5.015, PRNA=0.006 and 0.008); p53 expression in the HIF1α-Si1 and HIF1α-Si2 groups was decreased by 36.47% and 38.41% at the protein level, and by 33.43% and 30.67% at the mRNA level, respectively (tprotein=4.645 and 4.135, Pprotein=0.011 and 0.029; tRNA=4.373 and 3.912, PRNA=0.012 and 0.017). After PDLCs were transfected with Si-p53, p53 expression in the p53-Si1 and p53-Si2 groups was significantly decreased by 56.41% and 51.24% compared with the NC-Si control group (t=8.194 and 6.621, P=0.0012 and 0.0027). However, no significant changes in HIF1α expression were observed in the p53-Si1 and p53-Si2 groups compared with the NC-Si group (t=1.167 and1.391, P=0.308 and 0.237). After PDLCs were transfected with Si-p53 and further cultured under hypoxia for 48 h, ALP activity in the p53-Si1 and Si2 p53-groups was significantly increased by 2.05-fold and 2.17-fold compared with the NC-Si control group (t=4.889 and 4.346, P=0.008 and 0.012); ALP mRNA in the p53-Si1 and p53-Si2 groups was significantly increased by 2.14-fold and 2.05-fold than that of the NC-Si control group (t=5.423 and 4.078, P=0.006 and 0.015); COL1 mRNA was significantly increased by 2.86-fold and 3.03-fold (t=7.56 and 6.89, P=0.002 and 0.002); and RUNX2 mRNA was significantly increased by 3.41-fold and 3.71-fold (t=8.15 and 12.21, P=0.001 and 0.0003).

Conclusion

Hypoxia increases HIF-1α and p53 expression, and hypoxia inhibits osteogenic differentiation of PDLCs via upregulation of p53.

图1 牙周膜成纤维细胞经低氧培养后HIF-1α与p53蛋白变化(aP<0.05)
图2 敲低HIF-1α后低氧下牙周膜成纤维细胞中HIF-1α与p53水平变化(aP<0.05)
图3 敲低p53表达后低氧下PDLCs中p53与HIF-1α蛋白水平变化(aP<0.05)
图4 敲低p53表达后低氧对牙周膜成纤维细胞细胞成骨分化的影响(上:ALP活性检测;下:成骨标志物mRNA水平检测;aP<0.05)
1
庞静雯,吴亚霖,徐婷, 等. 低氧激活HIF-1α对人牙周膜成纤维细胞增殖与凋亡的影响[J]. 中华老年口腔医学杂志, 2017(3):170-174.
2
He Q, Yang S, Gu X, et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A[J]. Cell Death Dis, 2018, 9(5):455.
3
Ng K T, Li J P, Ng K M, et al. Expression of hypoxia-inducible factor-1alpha in human periodontal tissue[J]. J Periodontol, 2011, 82(1):136-141.
4
Zhang H Y, Liu R, Xing Y J, et al. Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro[J]. Exp Ther Med, 2013, 6(6):1553-1559.
5
庞静雯,吴亚霖,徐婷, 等. 低氧激活HIF-1α抑制人牙周膜成纤维细胞的成骨分化[J]. 口腔疾病防治, 2017(8):488-493.
6
Wang X, Kua H Y, Hu Y, et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling[J]. J Cell Biol, 2006, 172(1):115-125.
7
Memmert S, Golz L, Putz P, et al. Regulation of p53 under hypoxic and inflammatory conditions in periodontium[J]. Clin Oral Investig, 2016, 20(7):1781-1789.
8
庞静雯,吴亚霖,徐婷, 等. 低氧诱导人牙周膜成纤维细胞凋亡的研究[J]. 中华临床医师杂志(电子版), 2017(9):1527-1530.
9
Song Z C, Zhou W, Shu R, et al. Hypoxia induces apoptosis and autophagic cell death in human periodontal ligament cells through HIF-1alpha pathway[J]. Cell Prolif, 2012, 45(3):239-248.
10
Wu Y, Yang Y, Yang P, et al. The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia[J]. Arch Oral Biol, 2013, 58(10):1357-1368.
11
Zhao L, Wu Y, Tan L, et al. Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia[J]. J Periodontol, 2013, 84(12):1847-1857.
12
He Y, de Castro L F, Shin M H, et al. p53 loss increases the osteogenic differentiation of bone marrow stromal cells[J]. Stem Cells, 2015, 33(4):1304-1319.
13
周敏,吴亚霖,武东辉, 等. 钛表面微纳米形貌通过p53诱导大鼠骨髓间充质干细胞成骨分化的研究[J]. 中国口腔种植学杂志, 2017(03):101-104.
14
Zhou Y, Guan X, Wang H, et al. Hypoxia induces osteogenic/angiogenic responses of bone marrow-derived mesenchymal stromal cells seeded on bone-derived scaffolds via ERK1/2 and p38 pathways[J]. Biotechnol Bioeng, 2013, 110(6):1794-1804.
[1] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[2] 李勇, 全勇, 傅仕艳, 冉新泽, 唐红, 柳随义, 李杰, 舒畅, 陈用来, 张静, 杨冰冰, 郝玉徽. 低氧环境对小鼠急性放射损伤的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 299-305.
[3] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[4] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[5] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[6] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[7] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[8] 陈欣, 张校晨, 秦文, 金作林. 过表达甲基转移酶样3修复炎症来源牙周膜干细胞的成骨能力[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 15-25.
[9] 高超, 郑晨, 黄新, 李万林. 同源盒A10和P53蛋白在结直肠癌中的表达及其临床意义[J]. 中华普通外科学文献(电子版), 2023, 17(01): 40-44.
[10] 潘玮瑄, 郝少龙, 韩威. 低氧微环境与实体恶性肿瘤m6A修饰的研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 461-464.
[11] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[12] 汪俊谷, 潘华琴, 杨雨田. HFNC治疗急性低氧性呼吸衰竭插管预后及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 523-525.
[13] 陈趟, 王艺萱, 吴刚. 单肺通气术中低氧血症与术后肺部并发症的关系及其预测意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 355-357.
[14] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[15] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
阅读次数
全文


摘要