切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (09) : 518 -524. doi: 10.3877/cma.j.issn.1674-0785.2018.09.008

所属专题: 文献

基础研究

p53在低氧抑制人牙周膜成纤维细胞成骨分化中的作用
张叶1, 庄秀妹,2, 张越1, 王勤1, 彭雪珍1   
  1. 1. 518026 深圳,深圳市儿童医院口腔科
    2. 510120 广州,中山大学附属孙逸仙纪念医院口腔科
  • 收稿日期:2018-04-05 出版日期:2018-05-01
  • 通信作者: 庄秀妹
  • 基金资助:
    国家自然科学基金青年基金项目(81600899)

Hypoxia inhibits osteogenic differentiation of human periodontal ligament cells via p53 upregulation

Ye Zhang1, Xiumei Zhuang,2, Yue Zhang1, Qin Wang1, Xuezhen Peng1   

  1. 1. Department of Stomatology, Shenzhen Children’s Hospital, Shenzhen 518026, China
    2. Department of Stomatology, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Guangzhou 510120, China
  • Received:2018-04-05 Published:2018-05-01
  • Corresponding author: Xiumei Zhuang
  • About author:
    Corresponding author: Zhuang Xiumei, E-mail:
引用本文:

张叶, 庄秀妹, 张越, 王勤, 彭雪珍. p53在低氧抑制人牙周膜成纤维细胞成骨分化中的作用[J/OL]. 中华临床医师杂志(电子版), 2018, 12(09): 518-524.

Ye Zhang, Xiumei Zhuang, Yue Zhang, Qin Wang, Xuezhen Peng. Hypoxia inhibits osteogenic differentiation of human periodontal ligament cells via p53 upregulation[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(09): 518-524.

目的

探讨p53在低氧抑制人牙周膜成纤维细胞(PDLCs)成骨分化中的作用。

方法

体外正常氧(20% O2)和低氧(1% O2)中培养PDLCs细胞48 h,Western免疫印迹检测12、24与48 h时p53与HIF-1α的表达水平;小干扰RNA(Si-HIF1α)转染PDLCs,验证敲低HIF-1α表达后p53水平变化;进一步通过小干扰RNA(Si-p53)转染PDLCs,检测低氧下PDLCs中p53表达水平,比较碱性磷酸酶(ALP)活性,成骨标志物ALP、I型胶原(COL1)、成骨特异性转录因子(RUNX2)的mRNA表达量变化。采用SPSS 13.0软件对数据进行统计学分析。

结果

相比正常氧培养后HIF-1α/GAPDH蛋白比值0.309±0.052,PDLCs在低氧培养12、24、48 h后HIF-1α/GAPDH蛋白水平显著升高为0.801±0.049、0.881±0.037与0.936±0.039,差异具有统计学意义(t=6.901、9.041、9.704,P=0.002、0.0008、0.0006);同时p53/GAPDH蛋白比值分别为0.463±0.036、0.612±0.040与0.858±0.034,相较常氧的0.233±0.035显著上调,差异具有统计学意义(t=4.595、7.140、12.84,P=0.010、0.002、0.0002)。Si-HIF1α转染PDLCs并在低氧培养后,HIF1α-Si1、Si2转染组比阴性NC-Si组的HIF-1α在蛋白水平分别下降64.57%与59.94%,在mRNA水平分别下降66.67%、63.67%,差异具有统计学意义(t蛋白=9.326、6.985,P蛋白=0.0007、0.002;tRNA=5.319、5.015,PRNA=0.006、0.008);同时p53在蛋白水平分别下降36.47%与38.41%,在mRNA水平分别下降33.43%、30.67%,差异具有统计学意义(t蛋白=4.645、4.135,P蛋白=0.011、0.029;tRNA=4.373、3.912,PRNA=0.012、0.017)。PDLCs经p53-Si1、Si2转染后p53蛋白表达较NC-Si阴性组分别下降56.41%与51.24%,差异具有统计学意义(t=8.194、6.621,P=0.0012、0.0027),但HIF-1α蛋白水平无明显变化,差异无统计学意义(t=1.167、1.391,P=0.308、0.237)。将PDLCs转染p53-siRNA后继续在低氧培养48 h,p53-Si1、Si2组中PDLCs的ALP活性较NC-Si组升高2.05倍与2.17倍,差异具有统计学意义(t=4.889、4.346,P=0.008、0.012);成骨标志物ALP的mRNA水平分别升高2.14倍与2.05倍,差异具有统计学意义(t=5.423、4.078,P=0.006、0.015);COL1的mRNA水平分别升高2.86倍与3.03倍,差异具有统计学意义(t=7.56、6.89,P=0.002、0.002);RUNX2的mRNA水平分别升高3.41倍与3.71倍,差异具有统计学意义(t=8.15、12.21,P=0.001、0.0003)。

结论

低氧可上调HIF-1α与p53表达,进而抑制PDLCs成骨分化。

Objective

To investigate the role of p53 in hypoxia induced inhibition of osteogenic differentiation of periodontal ligament cells (PDLCs).

Methods

PDLCs were cultured under hypoxia (1% O2) or normoxia (20% O2) for 48 h. Western blot was used to detect the expression of p53 and HIF-1α at 12, 24, and 48 h. After transfection with siRNAs targeting HIF-1α (Si-HIF1α), HIF-1α and p53 expression was furthered detected. After transfection with siRNAs targeting p53 (Si-p53), p53 and HIF-1α expression, changes of alkaline phosphatase (ALP) activity, and mRNA expression of osteogenic markers ALP, collagen-I (COL1), and runt related transcription factor 2 (RUNX2) were detected to evaluate osteogenic differentiation of PDLCs under hypoxia. The data were statistically analyzed with SPSS 13.0 software package.

Results

Compared with the value (0.309±0.052) under normoixa, the relative expression of HIF-1α to GAPDH protein in PDLCs under hypoxia for 12, 24 and 48 h was significantly increased to 0.801±0.049, 0.881±0.037, and 0.936±0.039, respectively (t=6.901, 9.041, and 9.704; P=0.002, 0.0008, and 0.0006). The relative expression of p53 to GAPDH protein in PDLCs was significantly increased from 0.233±0.035 under normoixa to 0.463±0.036, 0.612±0.040, and 0.858±0.034 under hypoxia for 12, 24, and 48 h, respectively (t=4.595, 7.140, and 12.84; P=0.010, 0.002, and 0.0002). After PDLCs were transfected with Si-HIF1α and further cultured under hypoxia, HIF-1α expression in the HIF1α-Si1 and HIF1α-Si2 groups was significantly decreased by 64.57% and 59.94% at the protein level, and by 66.67% and 63.67% at the mRNA level compared with the NC-Si group, respectively (tprotein=9.326 and 6.985, Pprotein=0.0007 and 0.002; tRNA=5.319 and 5.015, PRNA=0.006 and 0.008); p53 expression in the HIF1α-Si1 and HIF1α-Si2 groups was decreased by 36.47% and 38.41% at the protein level, and by 33.43% and 30.67% at the mRNA level, respectively (tprotein=4.645 and 4.135, Pprotein=0.011 and 0.029; tRNA=4.373 and 3.912, PRNA=0.012 and 0.017). After PDLCs were transfected with Si-p53, p53 expression in the p53-Si1 and p53-Si2 groups was significantly decreased by 56.41% and 51.24% compared with the NC-Si control group (t=8.194 and 6.621, P=0.0012 and 0.0027). However, no significant changes in HIF1α expression were observed in the p53-Si1 and p53-Si2 groups compared with the NC-Si group (t=1.167 and1.391, P=0.308 and 0.237). After PDLCs were transfected with Si-p53 and further cultured under hypoxia for 48 h, ALP activity in the p53-Si1 and Si2 p53-groups was significantly increased by 2.05-fold and 2.17-fold compared with the NC-Si control group (t=4.889 and 4.346, P=0.008 and 0.012); ALP mRNA in the p53-Si1 and p53-Si2 groups was significantly increased by 2.14-fold and 2.05-fold than that of the NC-Si control group (t=5.423 and 4.078, P=0.006 and 0.015); COL1 mRNA was significantly increased by 2.86-fold and 3.03-fold (t=7.56 and 6.89, P=0.002 and 0.002); and RUNX2 mRNA was significantly increased by 3.41-fold and 3.71-fold (t=8.15 and 12.21, P=0.001 and 0.0003).

Conclusion

Hypoxia increases HIF-1α and p53 expression, and hypoxia inhibits osteogenic differentiation of PDLCs via upregulation of p53.

图1 牙周膜成纤维细胞经低氧培养后HIF-1α与p53蛋白变化(aP<0.05)
图2 敲低HIF-1α后低氧下牙周膜成纤维细胞中HIF-1α与p53水平变化(aP<0.05)
图3 敲低p53表达后低氧下PDLCs中p53与HIF-1α蛋白水平变化(aP<0.05)
图4 敲低p53表达后低氧对牙周膜成纤维细胞细胞成骨分化的影响(上:ALP活性检测;下:成骨标志物mRNA水平检测;aP<0.05)
1
庞静雯,吴亚霖,徐婷, 等. 低氧激活HIF-1α对人牙周膜成纤维细胞增殖与凋亡的影响[J]. 中华老年口腔医学杂志, 2017(3):170-174.
2
He Q, Yang S, Gu X, et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A[J]. Cell Death Dis, 2018, 9(5):455.
3
Ng K T, Li J P, Ng K M, et al. Expression of hypoxia-inducible factor-1alpha in human periodontal tissue[J]. J Periodontol, 2011, 82(1):136-141.
4
Zhang H Y, Liu R, Xing Y J, et al. Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro[J]. Exp Ther Med, 2013, 6(6):1553-1559.
5
庞静雯,吴亚霖,徐婷, 等. 低氧激活HIF-1α抑制人牙周膜成纤维细胞的成骨分化[J]. 口腔疾病防治, 2017(8):488-493.
6
Wang X, Kua H Y, Hu Y, et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling[J]. J Cell Biol, 2006, 172(1):115-125.
7
Memmert S, Golz L, Putz P, et al. Regulation of p53 under hypoxic and inflammatory conditions in periodontium[J]. Clin Oral Investig, 2016, 20(7):1781-1789.
8
庞静雯,吴亚霖,徐婷, 等. 低氧诱导人牙周膜成纤维细胞凋亡的研究[J]. 中华临床医师杂志(电子版), 2017(9):1527-1530.
9
Song Z C, Zhou W, Shu R, et al. Hypoxia induces apoptosis and autophagic cell death in human periodontal ligament cells through HIF-1alpha pathway[J]. Cell Prolif, 2012, 45(3):239-248.
10
Wu Y, Yang Y, Yang P, et al. The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia[J]. Arch Oral Biol, 2013, 58(10):1357-1368.
11
Zhao L, Wu Y, Tan L, et al. Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia[J]. J Periodontol, 2013, 84(12):1847-1857.
12
He Y, de Castro L F, Shin M H, et al. p53 loss increases the osteogenic differentiation of bone marrow stromal cells[J]. Stem Cells, 2015, 33(4):1304-1319.
13
周敏,吴亚霖,武东辉, 等. 钛表面微纳米形貌通过p53诱导大鼠骨髓间充质干细胞成骨分化的研究[J]. 中国口腔种植学杂志, 2017(03):101-104.
14
Zhou Y, Guan X, Wang H, et al. Hypoxia induces osteogenic/angiogenic responses of bone marrow-derived mesenchymal stromal cells seeded on bone-derived scaffolds via ERK1/2 and p38 pathways[J]. Biotechnol Bioeng, 2013, 110(6):1794-1804.
[1] 岳伟岗, 蒋由飞, 尹瑞元, 吴雨晨, 曾丽, 田金徽. 经鼻高流量氧疗对急性低氧性呼吸衰竭患者住院病死率的累积Meta分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 39-44.
[2] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[3] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[4] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[5] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[6] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[7] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[8] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[9] 苏小慧, 宋新雅, 鱼帆, 丁小涵, 卞士柱. 高原肺动脉高压机制与药物治疗进展[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 742-747.
[10] 程玲燕, 卢嘉宾, 韦庆, 兰祖. 急性低氧性呼吸衰竭乳酸/白蛋白比值与病死率相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 654-657.
[11] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[12] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[13] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[14] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[15] 张滕, 陶艳玲. Shwachman-Diamond综合征继发骨髓增生异常综合征一例及文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 178-182.
阅读次数
全文
3
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 2 0 0 1

  来源 本网站 其他网站
  次数 2 1
  比例 67% 33%

摘要
102
最新录用 在线预览 正式出版
0 0 102
  来源 本网站 其他网站
  次数 49 53
  比例 48% 52%