切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (09) : 525 -529. doi: 10.3877/cma.j.issn.1674-0785.2018.09.009

所属专题: 急危重症 文献

综述

间充质干细胞在脓毒症治疗中的研究进展
杨吉林1, 吴先正1,()   
  1. 1. 200065 上海市同济医院急诊医学科
  • 收稿日期:2018-04-08 出版日期:2018-05-01
  • 通信作者: 吴先正
  • 基金资助:
    上海市重要薄弱学科(2016ZB0204)

Advances in treatment of sepsis using mesenchymal stem cells

Jilin Yang1, Xianzheng Wu1,()   

  1. 1. Department of Emergency Medicine, Shanghai Tongji Hospital, Shanghai 200065, China
  • Received:2018-04-08 Published:2018-05-01
  • Corresponding author: Xianzheng Wu
  • About author:
    Corresponding author: Wu Xianzheng, Email:
引用本文:

杨吉林, 吴先正. 间充质干细胞在脓毒症治疗中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2018, 12(09): 525-529.

Jilin Yang, Xianzheng Wu. Advances in treatment of sepsis using mesenchymal stem cells[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(09): 525-529.

脓毒症(Sepsis)是一种威胁生命的综合征。宿主对微生物感染的免疫应答至关重要,脓毒症早期以过度炎症反应为主,而脓毒症晚期通常伴有免疫抑制。干细胞是一种有前景的脓毒症治疗手段。本文总结了干细胞在脓毒症中的作用机制,重点探讨间充质干细胞这种细胞目前表现出最广阔的治疗前景。

Sepsis is a life-threatening syndrome. The host immune response to microbial infection is critical, with early-phase sepsis characterized by a hyperinflammatory immune response, whereas the later phase of sepsis is often complicated by immunosuppression. Stem cells constitute promising therapeutic agents for sepsis. We examine the rationale for stem cells in the treatment of sepsis, focusing on mesenchymal stem/stromal cells, which currently demonstrate the greatest therapeutic promise.

1
张庆红,姚咏明. 严重脓毒症与免疫功能障碍[J]. 医学与哲学, 2014, 35(2):18-22.
2
Angus DC. van der Poll T: Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369:840-851.
3
刘大为. Sepsis-3还告诉了我们什么? [J] 中华危重病急救医学, 2017, 29(2):97-98.
4
Pisetsky DS.The origin and properties of extracellular DNA: From PAMP to DAMP[J]. Clin Immunol, 2012, 144:32-40.
5
Boomer JS, Green JM. Hotchkiss RS: The changing immune system in sepsis[J]. Is individualized immuno-modulatory therapy the answer Virulence, 2014, 5:45-56.
6
Hotchkiss RS. Karl IE: The pathophysiology and treatment of sepsis[J]. N Engl J Med, 2003, 348:138-150.
7
Kumar A.Kethireddy S: Emerging concepts in optimizing antimicrobial therapy of septic shock: Speed is life but a hammer helps too[J]. Crit Care, 2013, 17:104.
8
Martin GS, Mannino DM, Eaton S. The epidemiology of sepsis in the United States from 1979 through 2000[J]. N Engl J Med, 2003, 348:1546-1554.
9
Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA, 2011, 306:2594-2605.
10
Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome[J]. Intensive Care Med, 2011, 37:525-532.
11
Otto GP, Sossdorf M, Claus RA, et al. The late phase of sepsis is characterized by an increased microbiological burden and death rate[J]. Crit Care, 2011, 15:R183.
12
van Vught LA, Klein Klouwenberg PM, Spitoni C, et al.MARS Consortium: Incidence, risk factors, and attributable mortality of secondary infections in the intensive care unit after admission for sepsis[J]. JAMA, 2016, 315:1469-1479.
13
Angus DC: The search for effective therapy for sepsis: Back to the drawing board? [J] JAMA, 2011, 306:2614-2615.
14
Cohen J, Opal S, Calandra T. Sepsis studies need new direction[J]. Lancet Infect Dis, 2012, 12:503-505.
15
Curley GF, Hayes M, Ansari B, et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat[J]. Thorax, 2012, 67:496-501.
16
Curley GF, Ansari B, Hayes M, et al.Effects of intratracheal mesenchymal stromal cell therapy during recovery and resolution after ventilator-induced lung injury[J]. ANESTHESIOLOGY, 2013, 118:924-932.
17
Hayes M, Masterson C, Devaney J, et al. Therapeutic efficacy of human mesenchymal stromal cells in the repair of established ventilator-induced lung injury in the rat[J]. ANESTHESIOLOGY, 2015, 122:363-373.
18
Krasnodembskaya A, Song Y, Fang X, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37 Stem Cells[J]. 2010, 28:2229-2238.
19
Gupta N, Su X, Popov B,et al. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin induced acute lung injury in mice J[J]. Immunol, 2007, 179:1855-1863.
20
Lee JW FX, Gupta N, Serikov V, et al. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA, 2009, 106:6.
21
Wilson JG, Liu KD, Zhuo H, et al. Matthay MA: Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial[J]. Lancet Respir Med, 2015, 3:24-32.
22
Zhu YG FX, Abbott J, Fang XH, et al. Lee JW: Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxininduced acute lung injury in mice[J]. Stem Cells, 2014, 32:10.
23
Gupta N, Krasnodembskaya A, Kapetanaki M, et al. Matthay MA: Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia colipneumonia[J]. Thorax, 2012, 67:533-539.
24
Shalaby SM, El-Shal AS, Abd-Allah SH, et al. Abdelazim S: Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli-induced acute lung injury in mice[J]. Cytotherapy, 2014, 16:764-775.
25
Devaney J, Horie S, Masterson C, et al. Laffey JG: Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E[J]. coli in the rat. Thorax, 2015, 70:625-635.
26
Krasnodembskaya A, Samarani G, Song Y, et al. Matthay MA: Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes[J]. Am J Physiol Lung Cell Mol Physiol, 2012, 302:L1003-1013.
27
Sutton MT, Fletcher D, Ghosh SK, et al. Bonfield TL: Antimicrobial properties of mesenchymal stem cells: Therapeutic potential for cystic fibrosis infection, and treatment[J]. Stem Cells Int, 2016, 5303048.
28
Yuan Y, Lin S, Guo N, et al. Ye H: Marrow mesenchymal stromal cells reduce methicillin-resistant Staphylococcus aureus infection in rat models[J]. Cytotherapy, 2014, 16:56-63.
29
Guerra AD, Cantu DA, Vecchi JT, et al. Kao WJ: Mesenchymal stromal/stem cell and minocycline-loaded hydrogels inhibit the growth of staphylococcus aureus that evades immunomodulation of blood-derived leukocytes[J]. AAPS J, 2015, 17:620-630.
30
Monsel A, Zhu YG, Gennai S, et al. Lee JW: Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice[J]. Am J Respir Crit Care Med, 2015, 192:324-336.
31
Mei SH, Haitsma JJ, Dos Santos CC, et al. Stewart DJ: Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis[J]. Am J Respir Crit Care Med, 2010, 182:1047-1057.
32
Németh K, Leelahavanichkul A, Yuen PS, et al. Mezey E: Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin
33
dos Santos CC, Murthy S, Hu P, et al. Liles WC: Network analysis of transcriptional responses induced by mesenchymal stem cell treatment of experimental sepsis[J]. Am J Pathol, 2012, 181:1681-1692.
34
Weil BR, Herrmann JL, Abarbanell AM, et al. Meldrum DR: Intravenous infusion of mesenchymal stem cells is associated with improved myocardial function during endotoxemia[J]. Shock, 2011, 36:235-241.
35
Martinon F, Burns K. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10:417-426.
36
Miao CM, Jiang XW, He K, et al. Bone marrow stromal cells attenuate LPS-induced mouse acute liver injury via the prostaglandin E 2-dependent repression of the NLRP3 inflammasome in Kupffer cells[J]. Immunol Lett, 2016, 179:102-113.
37
Kolaczkowska E,. Kubes P: Neutrophil recruitment and function in health and inflammation[J]. Nat Rev Immunol, 2013, 13:159-175.
38
Mei SH, Haitsma JJ, Dos Santos CC, et al.Stewart DJ: Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis[J]. Am J Respir Crit Care Med, 2010, 182:1047-1057.
39
Chao YH, Wu HP, Wu KH, et al. Fu YC: An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis[J]. PLoS One, 2014, 9:e110338.
40
Ghannam S, Pène J, Moquet-Torcy G, et al. Yssel H: Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype[J]. J Immunol, 2010, 185:302-312.
41
Duffy MM, Ritter T, Ceredig R.Griffin MD: Mesenchymal stem cell effects on T-cell effector pathways[J]. Stem Cell Res Ther, 2011, 2:34.
42
Krampera M, Cosmi L, Angeli R, et al.Annunziato F: Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells[J]. Stem Cells, 2006, 24:386-398.
43
DelaRosa O, Sánchez-Correa B, Morgado S, et al.Casado JG: Human adipose-derived stem cells impair natural killer cell function and exhibit low susceptibility to natural killermediated lysis[J]. Stem Cells Dev, 2012, 21:1333-1343.
44
Belkaid Y. Tarbell K: Regulatory T cells in the control of host-microorganism interactions[J]. Annu Rev Immunol, 2009, 27:551-589.
45
Sun J, Han ZB, Liao W, et al. Han ZC: Intrapulmonary delivery of human umbilical cord mesenchymal stem cells attenuates acute lung injury by expanding CD4+CD25+ Forkhead Boxp3 (FOXP3)+ regulatory T cells and balancing anti- and pro-inflammatory factors[J].Cell Physiol Biochem, 2011, 27:587-596.
46
Heuer JG, Zhang T, Zhao J, et al. Na S: Adoptive transfer of in vitro-stimulated CD4+CD25+ regulatory T cells increases bacterial clearance and improves survival in polymicrobial sepsis[J]. J Immunol, 2005, 174:7141-7146.
47
Xu G, Zhang L, Ren G, et al. Shi Y: Immunosuppressive properties of cloned bone marrow mesenchymal stem cells[J]. Cell Res, 2007, 17:240-248.
48
Islam MN, Das SR, Emin MT, et al. Bhattacharya J: Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury[J]. Nat Med, 2012, 18:759-765.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[9] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[10] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[11] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[12] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[13] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[14] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[15] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?