1 |
Azzam D, Romiyo P, Nguyen T, et al. Dural repair in cranial surgery is associated with moderate rates of complications with both autologous and non-autologous dural substitutes[J]. World Neurosurg, 2018, 113:244-248.
|
2 |
Suwanprateeb J, Luangwattanawilai T, Theeranattapong T, et al. Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute[J]. J Mater Sci Mater Med, 2016, 27(7):122.
|
3 |
De Kegel D, Vastmans J, Fehervary H, et al. Biomechanical characterization of human dura mater[J]. J Mech Behav Biomed Mater, 2018, 79:122-134.
|
4 |
Protasoni M, Sangiorgi S, Cividini A, et al. The collagenic architecture of human dura mater[J]. J Neurosurg, 2011, 114(6):1723-1730.
|
5 |
Morales-Avalos R, Soto-Domínguez A, García-Juárez J, et al. Characterization and morphological comparison of human dura mater, temporalis fascia, and pericranium for the correct selection of an autograft in duraplasty procedures[J]. Surg Radiol Anat, 2017, 39(1):29-38.
|
6 |
Sabatino G, Della Pepa GM, Bianchi F, et al. Autologous dural substitutes: a prospective study[J]. Clin Neurol Neurosurg, 2014, 116:20-23.
|
7 |
Lam FC, Kasper E. Augmented autologous pericranium duraplasty in 100 posterior fossa surgeries-a retrospective case series[J]. Neurosurgery, 2012, 71(2 Suppl Operative):ons 302-307.
|
8 |
Tomita T, Hayashi N, Okabe M, et al. New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery[J]. J Neurol Surg B Skull Base, 2012, 73(5):302-307.
|
9 |
Pogorielov M, Kravtsova A, Reilly GC, et al. Experimental evaluation of new chitin-chitosan graft for duraplasty[J]. J Mater Sci Mater Med, 2017, 28(2):34.
|
10 |
Ito H, Kimura T, Sameshima T, et al. Reinforcement of pericranium as a dural substitute by fibrin sealant[J]. Acta Neurochir (Wien), 2011, 153(11):2251-2254.
|
11 |
Ae R, Hamaguchi T, Nakamura Y, et al. update: dura mater graft-associated Creutzfeldt-Jakob Disease-Japan, 1975-2017[J]. MMWR Morb Mortal Wkly Rep, 2018, 67(9):274-278.
|
12 |
Haïk S, Brandel JP. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses[J]. Infect Genet Evol, 2014, 26:303-312.
|
13 |
Kobayashi A, Matsuura Y, Mohri S, et al. Distinct origins of dura mater graft-associated Creutzfeldt-Jakob disease: past and future problems[J]. Acta Neuropathol Commun, 2014, 2:32.
|
14 |
Fairbairn NG, Randolph MA, Redmond RW. The clinical applications of human amnion in plastic surgery[J]. J Plast Reconstr Aesthet Surg, 2014, 67(5):662-675.
|
15 |
Huang D, Xu B, Yang X, et al. Conjunctival structural and functional reconstruction using acellular bovine pericardium graft (Normal GEN®) in rabbits[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(4):773-783.
|
16 |
Cole PD, Stal D, Sharabi SE, et al. A comparative, long-term assessment of four soft tissue substitutes[J]. Aesthet Surg J, 2011, 31(6):674-681.
|
17 |
Lee JH, Choi SK, Kang SY. Reconstruction of chronic complicated scalp and dural defects using acellular human dermis and latissimus dorsi myocutaneous free flap[J]. Arch Craniofac Surg, 2015, 16(2):80-83.
|
18 |
Skovsted Yde S, Brunbjerg ME, Gudmundsdottir G, et al. Dural repair using porcine ADM: two cases and a literature review[J]. Case Reports Plast Surg Hand Surg, 2017, 4(1):5-8.
|
19 |
Centonze R, Agostini E, Massaccesi S, et al. A novel equine-derived pericardium membrane for dural repair: A preliminary, short-term investigation[J]. Asian J Neurosurg, 2016, 11(3):201-205.
|
20 |
Pierson M, Birinyi PV, Bhimireddy S, et al. Analysis of decompressive craniectomies with subsequent cranioplasties in the presence of collagen matrix dural substitute and polytetrafluoroethylene as an adhesion preventative material[J]. World Neurosurg, 2016, 86:153-160.
|
21 |
Foy AB, Giannini C, Raffel C. Allergic reaction to a bovine dural substitute following spinal cord untethering. Case report[J]. J Neurosurg Pediatr, 2008, 1(2):167-169.
|
22 |
Chen J, Li Y, Wang T, et al. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in adult patients: a retrospective analysis of 103 patients[J]. Medicine (Baltimore), 2017, 96(4):e5945.
|
23 |
Cali I, Cohen ML, Haik S, et al. Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study[J]. Acta Neuropathol Commun, 2018, 6(1):5.
|
24 |
Takeuchi A, Kobayashi A, Parchi P, et al. Distinctive properties of plaque-type dura mater graft-associated Creutzfeldt-Jakob disease in cell-protein misfolding cyclic amplification [J]. Lab Invest, 2016, 96(5):581-587.
|
25 |
Esposito F, Grimod G, Cavallo LM, et al. Collagen-only biomatrix as dural substitute: what happened after a 5-year observational follow-up study[J]. Clin Neurol Neurosurg, 2013, 115(9):1735-1737.
|
26 |
Cavallo LM, Solari D, Somma T, et al. Use of equine pericardium sheet (LYOMESH®) as dura mater substitute in endoscopic endonasal transsphenoidal surgery[J]. Transl Med UniSa, 2013, 7:23-28.
|
27 |
Li Q, Mu L, Zhang F, et al. A novel fish collagen scaffold as dural substitute.[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80:346-351.
|
28 |
Xu Y, Cui W, Zhang Y, et al. Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration[J]. Adv Healthc Mater, 2017, 6(13).
|
29 |
Yang H, Dan W, Xiong S, et al. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold[J]. Acta Biomater, 2017, 47:135-148.
|
30 |
Huang YH, Lee TC, Chen WF, et al. Safety of the nonabsorbable dural substitute in decompressive craniectomy for severe traumatic brain injury[J]. J Trauma, 2011, 71(3):533-537.
|
31 |
Xiong NX, Tan DA, Fu P, et al. Healing of deep wound infection without removal of non-absorbable dura mater (Neuro-Patch®): a case report.[J]. J Long Term Eff Med Implants, 2016, 26(1):43-48.
|
32 |
Shi Z, Xu T, Yuan Y, et al. A new absorbable synthetic substitute with biomimetic design for dural tissue repair[J]. Artif Organs, 2016, 40(4):403-413.
|
33 |
Deng K, Ye X, Yang Y, et al. Evaluation of efficacy and biocompatibility of a new absorbable synthetic substitute as a dural onlay graft in a large animal model.[J]. Neurol Res, 2016, 38(9):799-808.
|
34 |
Lima FM, Pinto FC, Andrade-Da-Costa BL, et al. Biocompatible bacterial cellulose membrane in dural defect repair of rat[J]. J Mater Sci Mater Med, 2017, 28(3):37.
|
35 |
荆尧,王凯,徐晨,等. 纳米细菌纤维素膜修补兔硬脑膜的早期炎性指标变化[J]. 生物医学工程与临床, 2017(3):223-228.
|
36 |
Goldschmidt E, Cacicedo M, Kornfeld S, et al. Construction and in vitro testing of a cellulose dura mater graft[J]. Neurol Res, 2016, 38(1):25-31.
|
37 |
Deng K, Yang Y, Ke Y, et al. A novel biomimetic composite substitute of PLLA/gelatin nanofiber membrane for dura repairing[J]. Neurol Res, 2017, 39(9):819-829.
|
38 |
Schmalz P, Griessenauer C, Ogilvy CS, et al. Use of an absorbable synthetic polymer dural substitute for repair of dural defects: a technical note[J]. 2018, 10(1):e2127.
|
39 |
Goldschmidt E, Hem S, Ajler P, et al. A new model for dura mater healing: human dural fibroblast culture[J]. Neurol Res, 2013, 35(3):300-307.
|
40 |
Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(11 Pt A):1940-1951.
|
41 |
Lu KG, Stultz CM. Insight into the degradation of type-I collagen fibrils by MMP-8[J]. J Mol Biol, 2013, 425(10):1815-1825.
|
42 |
Gazzeri R, Neroni M, Alfieri A, et al. Transparent equine collagen biomatrix as dural repair. A prospective clinical study.[J]. Acta Neurochir (Wien), 2009, 151(5):537-543.
|
43 |
Parlato C, di Nuzzo G, Luongo M, et al. Use of a collagen biomatrix (TissuDura ®) for dura repair: a long-term neuroradiological and neuropathological evaluation[J]. Acta Neurochir (Wien), 2011, 153(1):142-147.
|
44 |
迟妍妍,乐尧金,刘旭昭,等. 胶原蛋白海绵的生物特性及体内降解吸收[J]. 中国组织工程研究, 2014, 18(34):5515-5519.
|
45 |
张友来,曾元临,邹立津,等. 冻干辐照猪硬脑膜的抗原性[J]. 中国组织工程研究, 2010, 14(53):9950-9952.
|
46 |
张友来,曾元临,辛国华. 冻干辐照猪硬脑膜胶原酶酶解时间与生物力学的测定[J]. 中国组织工程研究, 2008, 12(41):8075-8078.
|
47 |
Han L, Zhang ZW, Wang BH, et al. Construction and biocompatibility of a thin type I/II collagen composite scaffold[J]. Cell Tissue Bank, 2018: 19(1):47-59.
|
48 |
常洪波,潘腾飞,卢旺盛,等. 新型生物型硬脑膜补片的安全及有效性[J]. 中国组织工程研究, 2014, 18(25):3947-3952.
|
49 |
Kawecki M, Łabuś W, Klama‐Baryla A, et al. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix′ scaffolds and their role in regenerative medicine[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(2):909-923.
|
50 |
Shoulders MD, Raines RT. Collagen structure and stability [J]. Annu Rev Biochem, 2009, 78:929-958.
|
51 |
Wu LC, Kuo YJ, Sun FW, et al. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold[J]. Cell Tissue Bank, 2017, 18(3):383-396.
|