切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2018, Vol. 12 ›› Issue (11) : 639 -645. doi: 10.3877/cma.j.issn.1674-0785.2018.11.010

所属专题: 文献

综述

硬脑膜修复材料的研究及应用进展
王位坐1, 敖强2,()   
  1. 1. 110032 沈阳,中国医科大学附属第四医院神经外科;110122 沈阳,中国医科大学组织工程学教研室
    2. 110122 沈阳,中国医科大学组织工程学教研室
  • 收稿日期:2018-04-29 出版日期:2018-06-01
  • 通信作者: 敖强
  • 基金资助:
    国家重点研发计划(2017YFA0105802); 国家自然科学基金面上项目(81771351)

Progress in research and application of dural substitutes for dural repair

Weizuo Wang1, Qiang Ao2,()   

  1. 1. Department of Neurosurgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Tissue Engineering, China Medical University, Shenyang 110122, China
    2. Department of Tissue Engineering, China Medical University, Shenyang 110122, China
  • Received:2018-04-29 Published:2018-06-01
  • Corresponding author: Qiang Ao
  • About author:
    Corresponding author: Ao Qiang, Email:
引用本文:

王位坐, 敖强. 硬脑膜修复材料的研究及应用进展[J]. 中华临床医师杂志(电子版), 2018, 12(11): 639-645.

Weizuo Wang, Qiang Ao. Progress in research and application of dural substitutes for dural repair[J]. Chinese Journal of Clinicians(Electronic Edition), 2018, 12(11): 639-645.

硬脑膜缺损是临床较常见的问题。目前针对硬脑膜缺损所使用的自体组织、同种异体材料、异种材料和人工合成材料等硬脑膜修补材料分别存在各自的优点与缺点;而各自的特性将影响最终的疗效。本文将综述各类硬脑膜修复材料的研究及应用进展,为优化、筛选理想的硬脑膜修复产品提供依据。

Dural defect is a clinically common problem. Numerous autogenic, allogenic, xenogenic, and synthetic materials have been used to repair the dura mater in neurosurgical operations every day. There are some advantages and disadvantages for each kind of dural substitute, although they play an important role in dural repair. In this article, we review the progress in research and application of dural substitutes for dural repair, with an aim to guide the choice of ideal dural substitutes in clinical applications.

1
Azzam D, Romiyo P, Nguyen T, et al. Dural repair in cranial surgery is associated with moderate rates of complications with both autologous and non-autologous dural substitutes[J]. World Neurosurg, 2018, 113:244-248.
2
Suwanprateeb J, Luangwattanawilai T, Theeranattapong T, et al. Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute[J]. J Mater Sci Mater Med, 2016, 27(7):122.
3
De Kegel D, Vastmans J, Fehervary H, et al. Biomechanical characterization of human dura mater[J]. J Mech Behav Biomed Mater, 2018, 79:122-134.
4
Protasoni M, Sangiorgi S, Cividini A, et al. The collagenic architecture of human dura mater[J]. J Neurosurg, 2011, 114(6):1723-1730.
5
Morales-Avalos R, Soto-Domínguez A, García-Juárez J, et al. Characterization and morphological comparison of human dura mater, temporalis fascia, and pericranium for the correct selection of an autograft in duraplasty procedures[J]. Surg Radiol Anat, 2017, 39(1):29-38.
6
Sabatino G, Della Pepa GM, Bianchi F, et al. Autologous dural substitutes: a prospective study[J]. Clin Neurol Neurosurg, 2014, 116:20-23.
7
Lam FC, Kasper E. Augmented autologous pericranium duraplasty in 100 posterior fossa surgeries-a retrospective case series[J]. Neurosurgery, 2012, 71(2 Suppl Operative):ons 302-307.
8
Tomita T, Hayashi N, Okabe M, et al. New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery[J]. J Neurol Surg B Skull Base, 2012, 73(5):302-307.
9
Pogorielov M, Kravtsova A, Reilly GC, et al. Experimental evaluation of new chitin-chitosan graft for duraplasty[J]. J Mater Sci Mater Med, 2017, 28(2):34.
10
Ito H, Kimura T, Sameshima T, et al. Reinforcement of pericranium as a dural substitute by fibrin sealant[J]. Acta Neurochir (Wien), 2011, 153(11):2251-2254.
11
Ae R, Hamaguchi T, Nakamura Y, et al. update: dura mater graft-associated Creutzfeldt-Jakob Disease-Japan, 1975-2017[J]. MMWR Morb Mortal Wkly Rep, 2018, 67(9):274-278.
12
Haïk S, Brandel JP. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses[J]. Infect Genet Evol, 2014, 26:303-312.
13
Kobayashi A, Matsuura Y, Mohri S, et al. Distinct origins of dura mater graft-associated Creutzfeldt-Jakob disease: past and future problems[J]. Acta Neuropathol Commun, 2014, 2:32.
14
Fairbairn NG, Randolph MA, Redmond RW. The clinical applications of human amnion in plastic surgery[J]. J Plast Reconstr Aesthet Surg, 2014, 67(5):662-675.
15
Huang D, Xu B, Yang X, et al. Conjunctival structural and functional reconstruction using acellular bovine pericardium graft (Normal GEN®) in rabbits[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(4):773-783.
16
Cole PD, Stal D, Sharabi SE, et al. A comparative, long-term assessment of four soft tissue substitutes[J]. Aesthet Surg J, 2011, 31(6):674-681.
17
Lee JH, Choi SK, Kang SY. Reconstruction of chronic complicated scalp and dural defects using acellular human dermis and latissimus dorsi myocutaneous free flap[J]. Arch Craniofac Surg, 2015, 16(2):80-83.
18
Skovsted Yde S, Brunbjerg ME, Gudmundsdottir G, et al. Dural repair using porcine ADM: two cases and a literature review[J]. Case Reports Plast Surg Hand Surg, 2017, 4(1):5-8.
19
Centonze R, Agostini E, Massaccesi S, et al. A novel equine-derived pericardium membrane for dural repair: A preliminary, short-term investigation[J]. Asian J Neurosurg, 2016, 11(3):201-205.
20
Pierson M, Birinyi PV, Bhimireddy S, et al. Analysis of decompressive craniectomies with subsequent cranioplasties in the presence of collagen matrix dural substitute and polytetrafluoroethylene as an adhesion preventative material[J]. World Neurosurg, 2016, 86:153-160.
21
Foy AB, Giannini C, Raffel C. Allergic reaction to a bovine dural substitute following spinal cord untethering. Case report[J]. J Neurosurg Pediatr, 2008, 1(2):167-169.
22
Chen J, Li Y, Wang T, et al. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in adult patients: a retrospective analysis of 103 patients[J]. Medicine (Baltimore), 2017, 96(4):e5945.
23
Cali I, Cohen ML, Haik S, et al. Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study[J]. Acta Neuropathol Commun, 2018, 6(1):5.
24
Takeuchi A, Kobayashi A, Parchi P, et al. Distinctive properties of plaque-type dura mater graft-associated Creutzfeldt-Jakob disease in cell-protein misfolding cyclic amplification [J]. Lab Invest, 2016, 96(5):581-587.
25
Esposito F, Grimod G, Cavallo LM, et al. Collagen-only biomatrix as dural substitute: what happened after a 5-year observational follow-up study[J]. Clin Neurol Neurosurg, 2013, 115(9):1735-1737.
26
Cavallo LM, Solari D, Somma T, et al. Use of equine pericardium sheet (LYOMESH®) as dura mater substitute in endoscopic endonasal transsphenoidal surgery[J]. Transl Med UniSa, 2013, 7:23-28.
27
Li Q, Mu L, Zhang F, et al. A novel fish collagen scaffold as dural substitute.[J]. Mater Sci Eng C Mater Biol Appl, 2017, 80:346-351.
28
Xu Y, Cui W, Zhang Y, et al. Hierarchical Micro/Nanofibrous Bioscaffolds for Structural Tissue Regeneration[J]. Adv Healthc Mater, 2017, 6(13).
29
Yang H, Dan W, Xiong S, et al. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold[J]. Acta Biomater, 2017, 47:135-148.
30
Huang YH, Lee TC, Chen WF, et al. Safety of the nonabsorbable dural substitute in decompressive craniectomy for severe traumatic brain injury[J]. J Trauma, 2011, 71(3):533-537.
31
Xiong NX, Tan DA, Fu P, et al. Healing of deep wound infection without removal of non-absorbable dura mater (Neuro-Patch®): a case report.[J]. J Long Term Eff Med Implants, 2016, 26(1):43-48.
32
Shi Z, Xu T, Yuan Y, et al. A new absorbable synthetic substitute with biomimetic design for dural tissue repair[J]. Artif Organs, 2016, 40(4):403-413.
33
Deng K, Ye X, Yang Y, et al. Evaluation of efficacy and biocompatibility of a new absorbable synthetic substitute as a dural onlay graft in a large animal model.[J]. Neurol Res, 2016, 38(9):799-808.
34
Lima FM, Pinto FC, Andrade-Da-Costa BL, et al. Biocompatible bacterial cellulose membrane in dural defect repair of rat[J]. J Mater Sci Mater Med, 2017, 28(3):37.
35
荆尧,王凯,徐晨,等. 纳米细菌纤维素膜修补兔硬脑膜的早期炎性指标变化[J]. 生物医学工程与临床, 2017(3):223-228.
36
Goldschmidt E, Cacicedo M, Kornfeld S, et al. Construction and in vitro testing of a cellulose dura mater graft[J]. Neurol Res, 2016, 38(1):25-31.
37
Deng K, Yang Y, Ke Y, et al. A novel biomimetic composite substitute of PLLA/gelatin nanofiber membrane for dura repairing[J]. Neurol Res, 2017, 39(9):819-829.
38
Schmalz P, Griessenauer C, Ogilvy CS, et al. Use of an absorbable synthetic polymer dural substitute for repair of dural defects: a technical note[J]. 2018, 10(1):e2127.
39
Goldschmidt E, Hem S, Ajler P, et al. A new model for dura mater healing: human dural fibroblast culture[J]. Neurol Res, 2013, 35(3):300-307.
40
Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(11 Pt A):1940-1951.
41
Lu KG, Stultz CM. Insight into the degradation of type-I collagen fibrils by MMP-8[J]. J Mol Biol, 2013, 425(10):1815-1825.
42
Gazzeri R, Neroni M, Alfieri A, et al. Transparent equine collagen biomatrix as dural repair. A prospective clinical study.[J]. Acta Neurochir (Wien), 2009, 151(5):537-543.
43
Parlato C, di Nuzzo G, Luongo M, et al. Use of a collagen biomatrix (TissuDura ®) for dura repair: a long-term neuroradiological and neuropathological evaluation[J]. Acta Neurochir (Wien), 2011, 153(1):142-147.
44
迟妍妍,乐尧金,刘旭昭,等. 胶原蛋白海绵的生物特性及体内降解吸收[J]. 中国组织工程研究, 2014, 18(34):5515-5519.
45
张友来,曾元临,邹立津,等. 冻干辐照猪硬脑膜的抗原性[J]. 中国组织工程研究, 2010, 14(53):9950-9952.
46
张友来,曾元临,辛国华. 冻干辐照猪硬脑膜胶原酶酶解时间与生物力学的测定[J]. 中国组织工程研究, 2008, 12(41):8075-8078.
47
Han L, Zhang ZW, Wang BH, et al. Construction and biocompatibility of a thin type I/II collagen composite scaffold[J]. Cell Tissue Bank, 2018: 19(1):47-59.
48
常洪波,潘腾飞,卢旺盛,等. 新型生物型硬脑膜补片的安全及有效性[J]. 中国组织工程研究, 2014, 18(25):3947-3952.
49
Kawecki M, Łabuś W, Klama‐Baryla A, et al. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix′ scaffolds and their role in regenerative medicine[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(2):909-923.
50
Shoulders MD, Raines RT. Collagen structure and stability [J]. Annu Rev Biochem, 2009, 78:929-958.
51
Wu LC, Kuo YJ, Sun FW, et al. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold[J]. Cell Tissue Bank, 2017, 18(3):383-396.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[3] 吴雪烁, 冯景, 周毅. 乳腺癌组织微生物群特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 305-308.
[4] 刘远翔, 陈卓凡. 以拔牙窝萎缩性改变规律为基础的美学区即刻种植策略[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 407-412.
[5] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[6] 李婷, 张琳. 血清脂肪酸代谢物及维生素D水平与结直肠癌发生的关系研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 661-665.
[7] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[8] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[9] 潘春江, 李科, 李新楼, 杨博, 任雪玲. 高龄老人骨转换代谢标志物与肾功能的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 260-264.
[10] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[11] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 王磊, 李梦, 孙文利, 刘瑞, 王红春, 卢光泽, 赵颖, 郭进艳, 刘红星. 液相色谱质谱法对急性白血病患者血浆代谢组学的特征分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 850-857.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 周加军, 余永武, 周涵, 刘勇, 张凌. 甲状旁腺切除对继发性甲状旁腺功能亢进患者骨密度及骨代谢的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 706-710.
阅读次数
全文


摘要