切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (05) : 389 -392. doi: 10.3877/cma.j.issn.1674-0785.2019.05.014

所属专题: 文献

综述

白介素-33在支气管哮喘发病机制中的作用
李鑫1, 刘圆圆2, 张才擎1,()   
  1. 1. 250014,济南,山东省千佛山医院呼吸内科
    2. 271000,山东泰安,泰山医学院附属医院呼吸内科
  • 收稿日期:2019-01-28 出版日期:2019-03-01
  • 通信作者: 张才擎

Role of interleukin-33 in bronchial asthma

Xin Li1, Yuanyuan Liu2, Caiqing Zhang1,()   

  1. 1. Department of Respiratory Medicine, Qianfoshan Hospital, Jinan 250014, China
    2. Department of Respiratory Medicine, Affiliated Hospital of Taishan Medical College, Taian 271000, China
  • Received:2019-01-28 Published:2019-03-01
  • Corresponding author: Caiqing Zhang
  • About author:
    Corresponding author: Zhang Caiqing, Email:
引用本文:

李鑫, 刘圆圆, 张才擎. 白介素-33在支气管哮喘发病机制中的作用[J]. 中华临床医师杂志(电子版), 2019, 13(05): 389-392.

Xin Li, Yuanyuan Liu, Caiqing Zhang. Role of interleukin-33 in bronchial asthma[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(05): 389-392.

白介素(IL)-33属于IL-1细胞因子家族,它通过ST2膜受体诱导辅助型T细胞(Th)2免疫反应,在调节免疫系统中起重要作用。IL-33主要由上皮细胞分泌,也可由其他细胞如骨髓细胞、树突状细胞、巨噬细胞和肥大细胞产生。IL-33受体ST2在多种细胞广泛表达。Th2细胞、肥大细胞、嗜碱性粒细胞和嗜酸性粒细胞等多种Th2阳性细胞均参与支气管哮喘的发展过程。IL-33被认为是Th2型免疫反应始发因素,通过激活固有免疫及适应性免疫,诱导哮喘等过敏性疾病的发生发展。进一步了解IL-33的生物学特性有助于阐明其在哮喘治疗中干预作用。

Interleukin (IL)-33, belonging to the IL-1 cytokine family, induces a Th2 immune response through the ST2 membrane receptor and plays an important role in the regulation of the immune system. IL-33 is mainly secreted by epithelial cells and can also be produced by other cells such as bone marrow cells, dendritic cells, macrophages, and mast cells. The IL-33 receptor ST2 is widely expressed in a variety of cells. Th2 cells, mast cells, basophils, and eosinophils areall involved in the development of bronchial asthma (BA). IL-33 is thought to be the initiating factor of the Th2 type of immune response, and the development of allergic diseases such as asthma is induced by activating the innate immunity and adaptive immunity. Further understanding of the biological characteristics of IL-33 can help to elucidate its role in the treatment of asthma.

1
Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma [J]. Pharmacol Ther, 2018, 186: 98-113.
2
Lambrecht BN, Hammad H. The immunology of asthma [J]. Nat Immunol, 2015, 16: 45-56.
3
Johansson K, McSorley HJ. IL-33 in the developing lung-roles in asthma and infection [J]. Pediatr Allergy Immunol, 2019, 30(5): 503-510.
4
Baekkevold ES, Roussigne M, Yamanaka T, et al. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules [J]. Am J Pathol, 2003, 163: 69-79.
5
Schmitz J, Owyang A, Oldham E, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines [J]. Immunity, 2005, 23: 479-490.
6
Luthi AU, Cullen SP, McNeela EA, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases [J]. Immunity, 2009, 31: 84-98.
7
Carriere V, Roussel L, Ortega N, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo [J]. Proc Natl Acad Sci U S A, 2007, 104: 282-287.
8
Dunne A, O′Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense [J]. Sci STKE, 2003, 2003(171): re3.
9
Klemenz R, Hoffmann S, Werenskiold AK. Serum- and oncoprotein-mediated induction of a gene with sequence similarity to the gene encoding carcinoembryonic antigen [J]. Proc Natl Acad Sci U S A, 198, 86: 5708-5712.
10
Pecaric-Petkovic T, Didichenko SA, Kaempfer S, et al. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33 [J]. Blood, 2009, 113: 1526-1534.
11
Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity [J]. Nature, 2010, 464: 1367-1370.
12
Rossler U, Thomassen E, Hultner L, et al. Secreted and membrane-bound isoforms of T1, an orphan receptor related to IL-1-binding proteins, are differently expressed in vivo [J]. Dev Biol, 11995, 168: 86-97.
13
Liang Y, Yang N, Pan G, et al. Elevated IL-33 promotes expression of MMP2 and MMP9 via activating STAT3 in alveolar macrophages during LPS-induced acute lung injury [J]. Cell Mol Biol Lett, 2018, 23: 52.
14
Zhang L, Jiang LL, Cao ZW. Interleukin-33 promotes the inflammatory reaction in chronic rhinosinusitis with nasal polyps by NF-kappaB signaling pathway [J]. Eur Rev Med Pharmacol Sci, 2017, 21: 4501-4508.
15
Zhang Y, Bian C, Wu J, et al. IL-33 promotes airway remodeling in a mouse model of asthma via ERK1/2 signaling pathway [J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2016, 32: 590-594.
16
Ashlin TG, Buckley ML, Salter RC, et al. The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, -4 and -5 in human macrophages: Requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways [J]. Int J Biochem Cell Biol, 2014, 46: 113-123.
17
Tashiro H, Takahashi K, Hayashi S, et al. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model [J]. PLoS One, 2016, 11: e0157571.
18
Yagami A, Orihara K, Morita H, et al. IL-33 mediates inflammatory responses in human lung tissue cells [J]. J Immunol, 2010, 185: 5743-5750.
19
Bunting MM, Shadie AM, Flesher RP, et al. Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma [J]. Biomed Res Int, 2013, 2013: 250938.
20
Kondo Y, Yoshimoto T, Yasuda K, et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system [J]. Int Immunol, 2008, 20: 791-800.
21
Sjoberg LC, Nilsson AZ, Lei Y, et al. Interleukin 33 exacerbates antigen driven airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma [J]. Sci Rep, 2017, 7: 4219.
22
Zhiguang X, Wei C, Steven R, et al. Over-expression of IL-33 leads to spontaneous pulmonary inflammation in mIL-33 transgenic mice [J]. Immunol Lett, 2010, 131: 159-165.
23
Han H, Ziegler SF. Intradermal administration of IL-33 induces allergic airway inflammation [J]. Sci Rep, 2017, 7: 1706.
24
Lei Y, Boinapally V, Zoltowska A, et al. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma [J]. PLoS One, 2015, 10: e0133774.
25
Shadie AM, Herbert C, Kumar RK. Ambient particulate matter induces an exacerbation of airway inflammation in experimental asthma: role of interleukin-33 [J]. Clin Exp Immunol, 2014, 177: 491-499.
26
Mathews JA, Krishnamoorthy N, Kasahara DI, et al. IL-33 Drives Augmented Responses to Ozone in Obese Mice [J]. Environ Health Perspect, 2017, 125: 246-253.
27
Zoltowska AM, Lei Y, Fuchs B, et al. The interleukin-33 receptor ST2 is important for the development of peripheral airway hyperresponsiveness and inflammation in a house dust mite mouse model of asthma [J]. Clin Exp Allergy, 2016, 46: 479-490.
28
Oboki K, Ohno T, Kajiwara N, et al. IL-33 is a crucial amplifier of innate rather than acquired immunity [J]. Proc Natl Acad Sci U S A, 2010, 107: 18581-18586.
29
Louten J, Rankin AL, Li Y, et al. Endogenous IL-33 enhances Th2 cytokine production and T-cell responses during allergic airway inflammation [J]. Int Immunol, 2011, 23: 307-315.
30
Kaur D, Gomez E, Doe C, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk [J]. Allergy, 2015, 70: 556-567.
31
Guo Z, Wu J, Zhao J, et al. IL-33/ST2 promotes airway remodeling in asthma by activating the expression of fibronectin 1 and type 1 collagen in human lung fibroblasts [J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2014, 30: 975-979.
32
Ravanetti L, Dijkhuis A, Dekker T, et al. IL-33 drives influenza-induced asthma exacerbations by halting innate and adaptive antiviral immunity [J]. J Allergy Clin Immunol, 2019, 143(4): 1355-1370.e16.
33
Werder RB, Zhang V, Lynch JP, et al. Chronic IL-33 expression predisposes to virus-induced asthma exacerbations by increasing type 2 inflammation and dampening antiviral immunity [J]. J Allergy Clin Immunol, 2018, 141(5): 1607-1619.e9.
34
Ito R, Maruoka S, Soda K, et al. A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis [J]. JCI Insight, 2018, 3(21).pii:121580.
35
Li J, Zhang L, Chen X, et al. Pollen/TLR4 innate immunity signaling initiates IL-33/ST2/Th2 pathways in allergic inflammation [J]. Sci Rep, 2016, 6: 36150.
[1] 路东明, 陈建华, 艾月琴. 布地格福吸入气雾剂治疗支气管哮喘的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 361-363.
[2] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[3] 刘汶睿, 高丽娜, 于书娴, 周建刚. 支气管哮喘患者血清IL-27与IFN-γ及肺功能相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 224-226.
[4] 刘娜, 赵然然. 支气管哮喘微量元素水平与免疫功能的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 74-76.
[5] 李德莲, 杨鹏, 王琳. FeNO联合总IgE、CXCL13检测对儿童支气管炎继发哮喘的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 838-840.
[6] 张志华, 肖晓晨, 梅少奇. 维生素D3辅助治疗哮喘合并呼吸道感染对气道重塑及免疫功能影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 355-357.
[7] 张超, 岳小哲. EOS、总IgE与儿童哮喘严重程度和肺功能的相关性[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 183-186.
[8] 李江华, 李力, 何勇. 呼出气一氧化氮的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 119-122.
[9] 谢心怡, 胡宇翔, 席凡捷. 普仑司特联合丙酸氟替卡松治疗小儿哮喘的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 100-102.
[10] 尹莉莉, 李伟, 殷爱云, 张永燕. 孟鲁司特钠联合细菌溶解产物对哮喘患儿IL-33、sST2受体、EOS、ECP的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 803-805.
[11] 韩林华, 王婧, 周翔. 定喘汤穴位贴敷对哮喘急性发作EOS、总IgE及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 647-649.
[12] 罗妍妍, 陈青. 益生菌辅治小儿哮喘及对S100β蛋白、TLR4与炎性免疫因子的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 608-610.
[13] 蔡辉, 胡航, 曹亚. 中性粒细胞胞外诱捕网水平联合肺功能对哮喘急性发作预测意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 599-601.
[14] 张亚伟, 王兴智. 可溶性ST2蛋白在肾脏疾病中的作用研究进展[J]. 中华肾病研究电子杂志, 2021, 10(05): 292-295.
[15] 余鹏飞, 麦兴进, 符树强, 苏保寿, 吴益敏, 喻闻庆. 血清sTREM-1、IL-12及IL-33水平对创伤性脑损伤严重程度和预后评估的价值[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 18-22.
阅读次数
全文


摘要