1 |
Warburg O. The metabolism of carcinoma cells [J]. Cancer Res, 1925, 9(148): 148-163.
|
2 |
王镜岩,朱圣庚,徐长法. 生物化学教程 [M]. 北京: 高等教育出版社, 2008: 324-325.
|
3 |
Vander Heiden MG, Cantley LC, Thompson CB. Undertanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J]. Science, 2009, 324(5930): 1029-1033.
|
4 |
Vander Heiden, Cantley L, Thompson C, et al. Understanding the warburg effect: the metabolic requirements of cell proliferation [J]. Science, 2009, 324(5930): 1029-1033.
|
5 |
Kim W, Dang V. Cancer′s molecular sweet tooth and the Warburg effect [J]. Cancer Res, 2006, 66(18): 8927-8930.
|
6 |
Sawayama H, Ogata Y, Ishimoto T, et al. Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer [J]. Cancer Sci, 2019. [Epub ahead of print]
|
7 |
Chang L, Xu W, Zhang Y, et al. Long non-coding RNA-NEF targets glucose transportation to inhibit the proliferation of non-small-cell lung cancer cells [J]. Oncol Lett, 2019, 17(3): 2795-2801.
|
8 |
Oudard S, Arvelo F, Miccoli L, et al. High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss [J]. Br J Cancer, 1996, 74(6): 839-845.
|
9 |
Guppy M, Leedman P, Zu X, et al. Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells [J]. Biochem, 2002, 364(Pt 1): 309-315.
|
10 |
Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate [J]. Cancer cell, 2012, 21(3): 297-308.
|
11 |
Lin H, Patel S, Affleck VS, et al. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells [J]. Neuro Oncol, 2017, 19(1): 43-54.
|
12 |
Barbero S, Bajetto A, Bonavia R, et al. Expression of the chemokine receptor CXCR4and its ligand stromal cell-derived factor 1 in human brain tumors and theirinvolvement in glial proliferation in vitro [J]. Ann N Y Acad Sci, 2002, 973: 60-69.
|
13 |
Alterman RL, Stanley ER. Colony stimulating factor-1 expression in human glioma [J]. Mol Chem Neuropathol, 1994, 21(2-3): 177-188.
|
14 |
蔡莉. 人脑胶质瘤FDG摄取与乏氧诱导因子-1α表达及微血管密度的相关性 [J]. 中华核医学杂志, 2010, 30(1): 10-14.
|
15 |
Belohlavek O, Klener J, Vymazal J, et al. The diagnostics of recurrent gliomas using FDG-PET: still questionable? [J]. Nucl Med Rev Cent East Eur, 2002, 5(2): 127-130.
|
16 |
Maher E, Marin-Valencia I, Bachoo R, et al. Metabolism of [U-13 C]glucose in human brain tumors in vivo [J]. NMR Biomed, 2012, 25(11): 1234-1244.
|
17 |
Mashimo T, Pichumani K, Vemireddy V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases [J]. Cell, 2014, 159(7): 1603-1614.
|
18 |
Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG [J]. Nucl Med, 2005, 46(6): 945-952.
|
19 |
Albert NL, Weller M, Suchorska B, et al. Response assessment in neuro-oncology working group and european association for neuro-oncology recommendations for the clinical use of PET imaging in gliomas [J]. Neuro-oncology, 2016, 18(9): 1199-1208.
|
20 |
Vlashi E, Lagadec C, Vergnes L, et al. Metabolic state of glioma stem cells and nontumorigenic cells [J]. Proc Natl Acad Sci, 2011, 108(38): 16062-16067.
|
21 |
Ahmad F, Dixit D, Sharma V, et al. Nrf2-driven TERT regulates pentose phosphate pathway in glioblastoma [J]. Cell Death Dis, 2016, 7: e2213.
|
22 |
Kathagen-Buhmann A, Schulte A, Weller J, et al. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation [J]. Neuro Oncol, 2016, 18(9): 1219-1229.
|
23 |
Kashif Asghar, Asim Farooq, Bilal Zulfiqar, et al. Indoleamine 2, 3-dioxygenase: As a potential prognostic marker and immunotherapeutic target for hepatocellular carcinoma [J]. World J Gastroenterol, 2017, 23(13): 2286-2293.
|
24 |
Palanichamy K, Thirumoorthy K, Kanji S, et al. Methionine and kynurenine activate oncogenic kinases in glioblastoma, and methionine deprivation compromises proliferation [J]. Clin Cancer Res, 2016, 22(14): 3513-3523.
|
25 |
Mehrmohamadi M, Mentch L, Locasale J. Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism [J]. Nat Commun, 2016, 7: 13666.
|
26 |
Maddocks OD, Labuschagne CF, Adams PD, et al. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells [J]. Mol Cell, 2016, 61(2): 210-221.
|
27 |
Nogueira V, Hay N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy [J]. Clin Cancer Res, 2013, 19(16): 4309-4314.
|
28 |
Newman AC, Maddocks ODK. One-carbon metabolism in cancer [J]. Br J Cancer, 2017, 116(12): 1499-1504.
|
29 |
Maddocks ODK, Athineos D, Cheung EC, et al. Corrigendum: Modulating the therapeutic response of tumours to dietary serine and glycine starvation. [J]. Nature, 2017, 548(7665): 122.
|
30 |
Fuchs SA, Peeters-Scholte CM, de Barse MM, et al. Increased concentrations of both NMDA receptor co-agonists d-serine and glycine in global ischemia: a potential novel treatment target for perinatal asphyxia [J]. Amino Acids, 2012, 43(1): 355-363.
|
31 |
Kim D, Fiske BP, Birsoy K, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance [J]. Nature, 2015, 520(7547):363-367.
|