[1] |
Diehn M,Cho RW,Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature, 2009, 458(7239): 780-783.
|
[2] |
Zhou D,Shao L,Spitz DR. Reactive oxygen species in normal and tumor stem cells[J]. Adv Cancer Res, 2014, 122: 1-67.
|
[3] |
Ji Y,Yang C,Tang Z, et al. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation[J]. Nat Commun, 2017, 8: 15308.
|
[4] |
李国林, 印大中. ROS介导的蛋白质氧化的生化机制[J]. 生命的化学, 2007, 27(6): 516-520.
|
[5] |
Hoffmann MJ,Schulz WA. Causes and consequences of DNA hypomethylation in human cancer[J]. Biochem Cell Biol, 2005, 83(3): 296-321.
|
[6] |
Van De Voorde L,Speeckaert R,Van Gestel D, et al. DNA methylation-based biomarkers in serum of patients with breast cancer[J]. Mutat Res, 2012, 751(2): 304-325.
|
[7] |
Donkena KV,Young CY,Tindall DJ. Oxidative stress and DNA methylation in prostate cancer[J]. Obstet Gynecol Int, 2010, 2010: 302051.
|
[8] |
Franco R,Schoneveld O,Georgakilas AG, et al. Oxidative stress, DNA methylation and carcinogenesis[J]. Cancer Lett, 2008, 266(1): 6-11.
|
[9] |
Kryston TB,Georgiev AB,Pissis P, et al. Role of oxidative stress and DNA damage in human carcinogenesis[J]. Mutat Res, 2011, 711(1-2): 193-201.
|
[10] |
Young IS,McEneny J. Lipoprotein oxidation and atherosclerosis[J]. Biochem Soc Trans, 2001, 29(Pt2): 358-362.
|
[11] |
Niedernhofer LJ,Daniels JS,Rouzer CA, et al. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells[J]. J Biol Chem, 2003, 278(33): 31426-31433.
|
[12] |
Velasco-Velazquez MA,Homsi N,De La Fuente M, et al. Breast cancer stem cells[J]. Int J Biochem Cell Biol, 2012, 44(4) :573-577.
|
[13] |
Salmanzadeh A,Romero L,Shafiee H, et al. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature[J].Lab Chip, 2012, 12(1): 182-189.
|
[14] |
O′Brien CA,Pollett A,Gallinger S. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110.
|
[15] |
Chiba T,Kita K,Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties[J]. Hepatology, 2006, 44(1): 240-251.
|
[16] |
李士亭, 陶文成. 肿瘤干细胞表面标记物CD44在胃癌浸润和淋巴结转移中的作用[J].中国组织工程研究, 2015, 19(23): 3669-3673.
|
[17] |
Sahlberg SH,Spiegelberg D,Glimelius B, et al. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells[J]. PloS one, 2014, 9(4): e94621.
|
[18] |
Ciavardelli D,Rossi C,Barcaroli D, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment[J]. Cell death Dis, 2014, 5: e1336.
|
[19] |
Emmink BL,Verheem A,Van Houdt WJ, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes[J]. J Proteomics, 2013, 91: 84-96.
|
[20] |
Liao J,Qian F,Tchabo N, et al. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism[J].PloS one, 2014, 9(1): e84941.
|
[21] |
Palorini R,Votta G,Balestrieri C, et al. Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS[J]. J Cell Biochem, 2014, 115(2): 368-379.
|
[22] |
Zhou Y,Zhou Y,Shingu T, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis[J]. J Biol Chem, 2011, 286(37): 32843-32853.
|
[23] |
Dando I,Cordani M,Dalla Pozza E, et al. Antioxidant mechanisms and ROS-related microRNAs in cancer stem cells[J]. Oxid Med Cell Longev, 2015, 2015: 425708.
|
[24] |
Ciavardelli D,Rossi C,Barcaroli D, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment[J]. Cell Death Dis, 2014, 5: e1336.
|
[25] |
Emmink BL,Verheem A,Van Houdt WJ, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes[J]. J Proteomics, 2013, 91: 84-96.
|
[26] |
Tamada M,Nagano O,Tateyama S, et al. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells[J]. Cancer Res, 2012, 72(6): 1438-1448.
|
[27] |
De Luca A,Fiorillo M,Peiris-Pagès M, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells[J]. Oncotarget, 2015, 6(17): 14777-14795.
|
[28] |
Cipolleschi MG,Marzi I,Santini R, et al. Hypoxia-resistant profile implies vulnerability of cancer stem cells to physiological agents, which suggests new therapeutic targets[J]. Cell Cycle, 2014, 13(2): 268-278.
|
[29] |
Vlashi E,Lagadec C,Vergnes L, et al. Metabolic state of glioma stem cells and nontumorigenic cells[J]. Proc Natl Acad Sci U S A, 2011, 108(38): 16062-16067.
|
[30] |
Viale A,Pettazzoni P,Lyssiotis CA, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function[J].Nature, 2014, 514(7524): 628-632.
|
[31] |
Pastò A,Bellio C,Pilotto G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation[J]. Oncotarget, 2014, 5(12): 4305-4319.
|
[32] |
Flavahan WA,Wu Q,Hitomi M, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake[J]. Nat neurosci, 2013, 16(10): 1373-1382.
|
[33] |
Dong C,Yuan T,Wu Y, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer[J]. Cancer cell, 2013, 23(3): 316-331.
|
[34] |
Ishimoto T,Nagano O,Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth[J]. Cancer cell, 2011, 19(3): 387-400.
|
[35] |
Kawano Y,Iwama E,Tsuchihashi K, et al. CD44 variant-dependent regulation of redox balance in EGFR mutation-positive non-small cell lung cancer: A target for treatment[J]. Lung Cancer, 2017, 113: 72-78.
|
[36] |
Kim HM,Haraguchi N,Ishii H, et al. Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon[J] .Ann Surg Oncol, 2012, 19 Suppl 3: S539-S548.
|
[37] |
Haraguchi N,Ishii H,Mimori K, et al. CD13 is a therapeutic target in human liver cancer stem cells[J]. J Clin Invest, 2010, 120(9): 3326-3339.
|
[38] |
Wu WJ,Zhang Y,Zeng ZL, et al. β-phenylethyl isothiocyanate reverses platinum resistance by a GSH-dependent mechanism in cancer cells with epithelial-mesenchymal transition phenotype[J]. Biochem Pharmacol, 2013, 85(4): 486-496.
|
[39] |
Yuan S,Wang F,Chen G, et al. Effective elimination of cancer stem cells by a novel drug combination strategy[J]. Stem Cells, 2013, 31(1): 23-34.
|
[40] |
Liu PP,Liao J,Tang ZJ, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway[J]. Cell Death Differ, 2014, 21(1): 124-135.
|
[41] |
Mayer MJ,Klotz LH. Metformin and prostate cancer stem cells: a novel therapeutic target[J]. Prostate Cancer Prostatic Dis, 2015, 18(4): 303-309.
|
[42] |
Cheong JH,Park ES,Liang J, et al. Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models[J]. Mol Cancer Ther, 2011, 10(12): 2350-2362.
|
[43] |
Sancho P,Burgos-Ramos E,Tavera A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells[J]. Cell Metab, 2015, 22(4): 590-605.
|
[44] |
Li D,Fu Z,Chen R, et al. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy[J]. Oncotarget, 2015, 6(31): 31151-31163.
|