切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2017, Vol. 11 ›› Issue (23) : 2462 -2465. doi: 10.3877/cma.j.issn.1674-0785.2017.23.008

所属专题: 文献

综述

活性氧自由基与肿瘤干细胞的相关研究进展
季华1, 陈明卫1,()   
  1. 1. 230031 合肥,安徽医科大学第一附属医院内分泌科
  • 收稿日期:2017-10-29 出版日期:2017-12-01
  • 通信作者: 陈明卫

Relevant Research of Reactive oxygen species and tumor stem cell

Hua Ji1, Mingwei Chen1,()   

  1. 1. Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
  • Received:2017-10-29 Published:2017-12-01
  • Corresponding author: Mingwei Chen
  • About author:
    Corresponding author: Chen Mingwei, Email:
引用本文:

季华, 陈明卫. 活性氧自由基与肿瘤干细胞的相关研究进展[J]. 中华临床医师杂志(电子版), 2017, 11(23): 2462-2465.

Hua Ji, Mingwei Chen. Relevant Research of Reactive oxygen species and tumor stem cell[J]. Chinese Journal of Clinicians(Electronic Edition), 2017, 11(23): 2462-2465.

活性氧自由基(ROS)广泛存在于机体的代谢反应中,但其浓度在不同分化的肿瘤细胞中存在着显著差异。氧化应激是机体氧化系统和抗氧化系统平衡失调引起的,一般癌细胞中ROS水平是增加的,而肿瘤干细胞(CSCs)中ROS则表现出较低的水平。CSCs近年来引起了研究界的高度关注。CSCs是肿瘤发生发展的关键,独特的代谢特征可能是其耐药性的关键。通过提高CSCs中ROS浓度,可以选择性杀死CSCs或者是增加CSCs对放疗和化疗的有效性。

Reactive Oxygen Species (ROS) are widely present in the body's metabolic response, but their concentrations in tumor cells of different differentiation are significantly different. Oxidative stress is caused by the imbalance of the oxidation system and the antioxidant system of the human body. In contrast to general cancer cells in which ROS levels are increased, cancer stem cells (CSCs) exhibit lower levels of ROS. CSCs have attracted much attention of the research community in recent years, since they are the key to tumor genesis and development, and their unique metabolic characteristics may be the key to their drug resistance. It is possible to selectively kill CSCs by increasing the concentration of ROS in CSCs or to increase the sensitivity of CSCs to radiotherapy and chemotherapy

[1]
Diehn M,Cho RW,Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells[J]. Nature, 2009, 458(7239): 780-783.
[2]
Zhou D,Shao L,Spitz DR. Reactive oxygen species in normal and tumor stem cells[J]. Adv Cancer Res, 2014, 122: 1-67.
[3]
Ji Y,Yang C,Tang Z, et al. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation[J]. Nat Commun, 2017, 8: 15308.
[4]
李国林, 印大中. ROS介导的蛋白质氧化的生化机制[J]. 生命的化学, 2007, 27(6): 516-520.
[5]
Hoffmann MJ,Schulz WA. Causes and consequences of DNA hypomethylation in human cancer[J]. Biochem Cell Biol, 2005, 83(3): 296-321.
[6]
Van De Voorde L,Speeckaert R,Van Gestel D, et al. DNA methylation-based biomarkers in serum of patients with breast cancer[J]. Mutat Res, 2012, 751(2): 304-325.
[7]
Donkena KV,Young CY,Tindall DJ. Oxidative stress and DNA methylation in prostate cancer[J]. Obstet Gynecol Int, 2010, 2010: 302051.
[8]
Franco R,Schoneveld O,Georgakilas AG, et al. Oxidative stress, DNA methylation and carcinogenesis[J]. Cancer Lett, 2008, 266(1): 6-11.
[9]
Kryston TB,Georgiev AB,Pissis P, et al. Role of oxidative stress and DNA damage in human carcinogenesis[J]. Mutat Res, 2011, 711(1-2): 193-201.
[10]
Young IS,McEneny J. Lipoprotein oxidation and atherosclerosis[J]. Biochem Soc Trans, 2001, 29(Pt2): 358-362.
[11]
Niedernhofer LJ,Daniels JS,Rouzer CA, et al. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells[J]. J Biol Chem, 2003, 278(33): 31426-31433.
[12]
Velasco-Velazquez MA,Homsi N,De La Fuente M, et al. Breast cancer stem cells[J]. Int J Biochem Cell Biol, 2012, 44(4) :573-577.
[13]
Salmanzadeh A,Romero L,Shafiee H, et al. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature[J].Lab Chip, 2012, 12(1): 182-189.
[14]
O′Brien CA,Pollett A,Gallinger S. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-110.
[15]
Chiba T,Kita K,Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties[J]. Hepatology, 2006, 44(1): 240-251.
[16]
李士亭, 陶文成. 肿瘤干细胞表面标记物CD44在胃癌浸润和淋巴结转移中的作用[J].中国组织工程研究, 2015, 19(23): 3669-3673.
[17]
Sahlberg SH,Spiegelberg D,Glimelius B, et al. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells[J]. PloS one, 2014, 9(4): e94621.
[18]
Ciavardelli D,Rossi C,Barcaroli D, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment[J]. Cell death Dis, 2014, 5: e1336.
[19]
Emmink BL,Verheem A,Van Houdt WJ, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes[J]. J Proteomics, 2013, 91: 84-96.
[20]
Liao J,Qian F,Tchabo N, et al. Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism[J].PloS one, 2014, 9(1): e84941.
[21]
Palorini R,Votta G,Balestrieri C, et al. Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS[J]. J Cell Biochem, 2014, 115(2): 368-379.
[22]
Zhou Y,Zhou Y,Shingu T, et al. Metabolic alterations in highly tumorigenic glioblastoma cells: preference for hypoxia and high dependency on glycolysis[J]. J Biol Chem, 2011, 286(37): 32843-32853.
[23]
Dando I,Cordani M,Dalla Pozza E, et al. Antioxidant mechanisms and ROS-related microRNAs in cancer stem cells[J]. Oxid Med Cell Longev, 2015, 2015: 425708.
[24]
Ciavardelli D,Rossi C,Barcaroli D, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment[J]. Cell Death Dis, 2014, 5: e1336.
[25]
Emmink BL,Verheem A,Van Houdt WJ, et al. The secretome of colon cancer stem cells contains drug-metabolizing enzymes[J]. J Proteomics, 2013, 91: 84-96.
[26]
Tamada M,Nagano O,Tateyama S, et al. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells[J]. Cancer Res, 2012, 72(6): 1438-1448.
[27]
De Luca A,Fiorillo M,Peiris-Pagès M, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells[J]. Oncotarget, 2015, 6(17): 14777-14795.
[28]
Cipolleschi MG,Marzi I,Santini R, et al. Hypoxia-resistant profile implies vulnerability of cancer stem cells to physiological agents, which suggests new therapeutic targets[J]. Cell Cycle, 2014, 13(2): 268-278.
[29]
Vlashi E,Lagadec C,Vergnes L, et al. Metabolic state of glioma stem cells and nontumorigenic cells[J]. Proc Natl Acad Sci U S A, 2011, 108(38): 16062-16067.
[30]
Viale A,Pettazzoni P,Lyssiotis CA, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function[J].Nature, 2014, 514(7524): 628-632.
[31]
Pastò A,Bellio C,Pilotto G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation[J]. Oncotarget, 2014, 5(12): 4305-4319.
[32]
Flavahan WA,Wu Q,Hitomi M, et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake[J]. Nat neurosci, 2013, 16(10): 1373-1382.
[33]
Dong C,Yuan T,Wu Y, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer[J]. Cancer cell, 2013, 23(3): 316-331.
[34]
Ishimoto T,Nagano O,Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth[J]. Cancer cell, 2011, 19(3): 387-400.
[35]
Kawano Y,Iwama E,Tsuchihashi K, et al. CD44 variant-dependent regulation of redox balance in EGFR mutation-positive non-small cell lung cancer: A target for treatment[J]. Lung Cancer, 2017, 113: 72-78.
[36]
Kim HM,Haraguchi N,Ishii H, et al. Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial-mesenchymal transition-like phenomenon[J] .Ann Surg Oncol, 2012, 19 Suppl 3: S539-S548.
[37]
Haraguchi N,Ishii H,Mimori K, et al. CD13 is a therapeutic target in human liver cancer stem cells[J]. J Clin Invest, 2010, 120(9): 3326-3339.
[38]
Wu WJ,Zhang Y,Zeng ZL, et al. β-phenylethyl isothiocyanate reverses platinum resistance by a GSH-dependent mechanism in cancer cells with epithelial-mesenchymal transition phenotype[J]. Biochem Pharmacol, 2013, 85(4): 486-496.
[39]
Yuan S,Wang F,Chen G, et al. Effective elimination of cancer stem cells by a novel drug combination strategy[J]. Stem Cells, 2013, 31(1): 23-34.
[40]
Liu PP,Liao J,Tang ZJ, et al. Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway[J]. Cell Death Differ, 2014, 21(1): 124-135.
[41]
Mayer MJ,Klotz LH. Metformin and prostate cancer stem cells: a novel therapeutic target[J]. Prostate Cancer Prostatic Dis, 2015, 18(4): 303-309.
[42]
Cheong JH,Park ES,Liang J, et al. Dual inhibition of tumor energy pathway by 2-deoxyglucose and metformin is effective against a broad spectrum of preclinical cancer models[J]. Mol Cancer Ther, 2011, 10(12): 2350-2362.
[43]
Sancho P,Burgos-Ramos E,Tavera A, et al. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells[J]. Cell Metab, 2015, 22(4): 590-605.
[44]
Li D,Fu Z,Chen R, et al. Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy[J]. Oncotarget, 2015, 6(31): 31151-31163.
[1] 张锦, 郑瑾, 叶陈晓, 陈海滔, 李欣荣, 肖海娟, 郭勇. 基于糖酵解相关基因模型的乳腺癌患者预后及免疫功能综合分析[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 336-345.
[2] 杨孝来, 俞作仁, 黄小玲, 赵倩, 刘君君, 韩晶. 乳腺癌干细胞抵抗放射治疗及化疗的调控机制[J]. 中华乳腺病杂志(电子版), 2019, 13(01): 1-7.
[3] 冯丹, 邹娟, 方芳. CD133及CD44表达与不同类型上皮性卵巢癌组织[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(04): 447-452.
[4] 李文清, 刘海潮, 梁建锋, 陈冠辉, 竺越, 张鸣, 侯劲松. 转化生长因子β1增强糖酵解促进舌鳞状细胞癌细胞上皮间充质转化及迁移与侵袭[J]. 中华口腔医学研究杂志(电子版), 2018, 12(03): 144-151.
[5] 李骏, 张倩, 江东根, 陈楚杰, 庞俊. PFKFB3基因在前列腺癌中的表达及其对前列腺癌细胞糖酵解及生长的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(06): 460-465.
[6] 张越, 王浩宇, 王星月, 刘伟. Bach1信号途径与非小细胞癌转移的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(01): 117-120.
[7] 甘开梅, 黄剑. 肺癌干细胞对EGFR-TKI耐药影响的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 36-44.
[8] 丁丰悦, 武宏春, 黄莹, 殷为民, 雷伟. miR-148/152家族调控内皮细胞糖酵解相关基因的表达分析[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 321-328.
[9] 何环宇, 姜笑, 张琨明, 杨育坤, 王茂, 李懿. 肿瘤干细胞对非小细胞肺癌放疗效果机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(03): 177-181.
[10] 李孝琼, 肖云峰, 吴妮莎, 徐黎明, 罗博, 周国俊, 冷政伟. 肿瘤干细胞及Wnt/β-catenin信号通路在结直肠癌肝转移中的作用[J]. 中华肝脏外科手术学电子杂志, 2019, 08(04): 377-378.
[11] 欧苏文, 罗康佳, 管子龙, 黄睿. MicroRNAs调控结直肠癌干细胞的研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(03): 306-312.
[12] 隆昱洲, 柳华, 张云茜, 李兴统, 范云虎, 尚正良, 宋镇妤, 罗丽华. 依达拉奉预适应延长急性缺血性脑卒中溶栓时间窗的研究及ROS/TXNIP/NLRP3通路参与机制的探讨[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 65-74.
[13] 殷志豪, 张芝良, 肖嘉伍, 樊奇, 熊德海. 肿瘤干细胞在结直肠癌耐药及转移过程中作用的研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(09): 730-734.
[14] 王仕超, 张焱如, 张瑞剑. 神经胶质瘤增殖特性与糖代谢机制的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(06): 468-472.
[15] 罗明华, 叶静, 张增, 金香兰, 尹为华. CD44和EPCR mRNA在乳腺癌组织中的表达及其临床意义[J]. 中华临床医师杂志(电子版), 2018, 12(09): 492-499.
阅读次数
全文


摘要