切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2019, Vol. 13 ›› Issue (08) : 589 -595. doi: 10.3877/cma.j.issn.1674-0785.2019.08.006

所属专题: 文献

临床研究

联合CD19和KITD816进一步优化t(8;21)急性髓系白血病预后分层
王彪1, 林榕榕1, 杨斌1, 李海乾1, 邢姗姗2, 张修文3, 谢晓宝1, 严峰1,()   
  1. 1. 213000 江苏常州,常州市第一人民医院血液科
    2. 310013 浙江杭州,浙江医院血液科
    3. 213000,江苏常州,南京医科大学附属常州二院血液科
  • 收稿日期:2019-02-16 出版日期:2019-04-15
  • 通信作者: 严峰

CD19 combined with KITD816 for optimization of prognostic stratification of t(8; 21) acute myeloid leukemia

Biao Wang1, Rongrong Lin1, Bin Yang1, Haiqian Li1, Shanshan Xing2, Xiuwen Zhang3, Xiaobao Xie1, Feng Yan1,()   

  1. 1. Department of Hematology, Changzhou First People's Hospital, Changzhou 213000, China
    2. Department of Hematology, Zhejiang Hospital, Hangzhou 310013, China
    3. Department of Hematology, Nanjing Medical University Affiliated Changzhou Second Hospital, Changzhou 213000, China
  • Received:2019-02-16 Published:2019-04-15
  • Corresponding author: Feng Yan
  • About author:
    Corresponding author: Yan Feng, Email:
引用本文:

王彪, 林榕榕, 杨斌, 李海乾, 邢姗姗, 张修文, 谢晓宝, 严峰. 联合CD19和KITD816进一步优化t(8;21)急性髓系白血病预后分层[J]. 中华临床医师杂志(电子版), 2019, 13(08): 589-595.

Biao Wang, Rongrong Lin, Bin Yang, Haiqian Li, Shanshan Xing, Xiuwen Zhang, Xiaobao Xie, Feng Yan. CD19 combined with KITD816 for optimization of prognostic stratification of t(8; 21) acute myeloid leukemia[J]. Chinese Journal of Clinicians(Electronic Edition), 2019, 13(08): 589-595.

目的

分析当前治疗模式下的t(8;21)急性髓系白血病(AML)患者的缓解和预后异质性,为进一步个体化治疗提供依据。

方法

收集2014年10月至2018年9月常州市第一人民医院107例标准方案诱导的成人初治t(8;21)AML患者,综合传统MICM和二代测序(NGS)基因突变特征,应用多因素Logistic和Cox回归分析,评价完全缓解(CR)率、累积复发率、无事件生存(EFS)和总生存(OS)的影响因素。

结果

诱导1个疗程后,CR率为79.0%(83/105),早期死亡率为1.9%(2/107)。多因素分析显示,KIT-D816突变阳性是不良影响CR率[HR=3.29(1.18~9.24),P=0.023]、EFS[HR=3.53(1.82~6.84),P=0.000]和OS[HR=5.45(1.77~16.84),P=0.003]的唯一独立因素。CD19表达阴性是唯一独立预测累积复发率增加的不利因素[HR=0.32(0.10~1.00),P=0.050]。而KIT突变、KIT-N822和复杂核型对任何终点均不构成独立意义。

结论

建议将特定的KIT-D816突变而非KIT突变纳入t(8;21)AML危险分层体系;CD19表达阴性的t(8;21)AML患者复发风险增加,需密切监测。

Objective

To analyze the heterogeneity of remission and prognosis of patients with t(8; 21) acute myeloid leukemia (AML) under current treatment modalities, and to provide a basis for further risk-adapted treatment.

Methods

A total of 107 adult patients with primary t(8; 21) AML treated with the standard 3+ 7 regimen at Changzhou First People's Hospital from October 2014 to September 2018 were collected. The complete remission (CR) rate, cumulative incidence of relapse, event-free survival (EFS), and overall survival (OS) were evaluated by combining the characteristics of traditional Morphology, Immunology, Cytogenetics, and Molecular biology (MICM) and genetic mutations based on next-generation sequencing (NGS) using multivariate Logistic and Cox regression analyses.

Results

After a single induction course, the CR rate was 79.0% (83/105) and the early mortality rate was 1.9% (2/107). Multivariate analysis showed that positive KIT-D816mut was the only independent factor adversely affecting the CR rate (hazard ratio [HR]=3.29 [1.18-9.24], P=0.023), EFS (HR=3.53 [1.82-6.84], P=0.000), and OS (HR=5.45 [1.77-16.84], P=0.003). Negative CD19 expression was the only independent predictor of increased cumulative incidence of relapse (HR=0.32 [0.10-1.00], P=0.050). KITmut, KIT-N822, and complex karyotype were not independent risk factors for all endpoints.

Conclusions

It is suggested that the specific KIT-D816mut, rather than general KITmut, should be included in the risk stratification system of t(8; 21) AML. Patients with negative CD19 have an increased risk of relapse, which requires close monitoring.

表1 107例初诊t(8;21)患者基本资料、MICM分型和基因突变特征
因素 数值
年龄[岁,中位数(范围)] 36(16~67)
? 年龄<35[例(%)] 50(46.7)
? 年龄≥35[例(%)] 57(53.3)
性别(男/女) 57/50
WBC计数[×109/L,中位数(范围)] 8.7(1.3~155.0)
? WBC<10[例(%)] 58(54.2)
? WBC≥10[例(%)] 49(45.8)
Hb水平[g/L,中位数(范围)] 74(39~145)
? Hb<80[例(%)] 68(63.6)
? Hb≥80[例(%)] 39(36.4)
PLT计数[×109/L,中位数(范围)] 28(2~195)
? PLT<30[例(%)] 57(53.3)
? PLT≥30[例(%)] 50(46.7)
RUNX1-RUNX1T1定量[copies/ABL copies,中位数(范围)] 179.4(28.1~675.0)
? Fusion transcript<150[例(%)] 28/70(40.0)
? Fusion transcript≥150[例(%)] 42/70(60.0)
WT1定量[copies/ABL copies,中位数(范围)] 22.7(0.2~312.7)
? WT1<30[例(%)] 31/57(54.4)
? WT1≥30[例(%)] 26/57(45.6)
免疫表型[n/N(%)]a ?
? CD34 105/105(100)
? TdT 24/101(23.8)
? HLA-DR 104/105(99.0)
? CD117 105/105(100.0)
? CD13 101/105(96.2)
? CD33 103/105(98.1)
? CD123 100/101(99.0)
? CD38 101/103(98.1)
? CD64 6/90(6.7)
? CD56 81/96(84.4)
? MPO 100/101(99.0)
? CD9 30/68(44.1)
? CD19 79/105(75.2)
? CD79a 22/101(21.8)
? CD7 13/96(13.5)
细胞遗传学[例(%)] ?
? 单独t(8;21) 39(36.4)
? 附加LOS 52(48.6)
? 附加del(9q) 3(2.8)
? 附加≥2个其他异常 12(11.2)
? 附加≥3个其他异常 8(7.5)
? 变异性复杂易位 7(6.5)
基因突变[n/N(%)]a ?
? 信号传导通路 ?
? ? KIT 47/95(49.5)
? ? KIT-D816 29/95(30.5)
? ? KIT-N822 17/95(17.9)
? ? NRAS 14/95(14.7)
? ? FLT3 12/95(12.6)
? ? FLT3-ITD 7/95(7.4)
? ? FLT3其他 5/95(5.3)
? ? CSF3R 8/95(8.4)
? ? RELN 8/95(8.4)
? ? JAK2 8/95(8.4)
? ? NOTCH1 10/95(10.5)
? ? SH2B3 8/95(8.4)
? 表观遗传学调节 ?
? ? KMT2D 10/95(10.5)
? ? TET2 8/95(8.4)
? ? ASXL1 9/95(9.5)
? ? EP300 6/95(6.3)
? ? CREBBP 6/95(6.3)
? 肿瘤抑制因子(FAT1) 14/95(14.7)
突变个数[中位数(范围)] 3(0~11)
表2 t(8;21)患者CR率多因素Logistic回归分析
表3 t(8;21)患者累积复发率多因素Cox分析
图1,2 累积复发率生存曲线 图1为CD19阳性和阴性患者的累积复发率;图2为KIT-D816阳性和阴性患者的累积复发率
表4 t(8;21)患者EFS多因素Cox分析
图3,4 无事件生存率生存曲线 图3为CD19表达阳性和阴性患者的无事件生存率,图4为KIT-D816突变阳性或阴性的患者的无事件生存率
表5 t(8;21)患者OS多因素Cox分析
1
Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20): 2391-405.
2
Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered[J]. J Clin Oncol, 1999, 17(12): 3767-3775.
3
Appelbaum FR, Kopecky KJ, Tallman MS, et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations[J]. Br J Haematol, 2006, 135(2): 165-173.
4
Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup[J]. J Clin Oncol, 2004, 22(18): 3741-3750.
5
Marcucci G, Mrozek K, Ruppert AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study[J]. J Clin Oncol, 2005, 23(24): 5705-5717.
6
Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials[J]. Blood, 2010, 116(3): 354-365.
7
Solh M, Yohe S, Weisdorf D, et al. Core-binding factor acute myeloid leukemia: Heterogeneity, monitoring, and therapy[J]. Am J Hematol, 2014, 89(12): 1121-1131.
8
Schoch C, Haase D, Haferlach T, et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor[J]. Leukemia, 1996, 10(8): 1288-1295.
9
Rege K, Swansbury GJ, Atra AA, et al. Disease features in acute myeloid leukemia with t(8;21)(q22;q22). Influence of age, secondary karyotype abnormalities, CD19 status, and extramedullary leukemia on survival[J]. Leuk Lymphoma, 2000, 40(1-2): 67-77.
10
Klein K, Kaspers G, Harrison CJ, et al. Clinical Impact of Additional Cytogenetic Aberrations, cKIT and RAS Mutations, and Treatment Elements in Pediatric t(8;21)-AML: Results From an International Retrospective Study by the International Berlin-Frankfurt-Munster Study Group[J]. J Clin Oncol, 2015, 33(36): 4247-4258.
11
Gupta V, Minden MD, Yi QL, et al. Prognostic significance of trisomy 4 as the sole cytogenetic abnormality in acute myeloid leukemia[J]. Leuk Res, 2003, 27(11): 983-991.
12
Hsiao HH, Liu YC, Wang HC, et al. Additional chromosomal abnormalities in core-binding factor acute myeloid leukemia[J]. Genet Mol Res, 2015, 14(4): 17028-17033.
13
Mosna F, Papayannidis C, Martinelli G, et al. Complex karyotype, older age, and reduced first-line dose intensity determine poor survival in core binding factor acute myeloid leukemia patients with long-term follow-up[J]. Am J Hematol, 2015, 90(6): 515-523.
14
Iriyama N, Hatta Y, Takeuchi J, et al. CD56 expression is an independent prognostic factor for relapse in acute myeloid leukemia with t(8;21)[J]. Leuk Res, 2013, 37(9): 1021-1026.
15
National Comprehensive Cancer Network. Acute Myeloid Leukemia (Version 3.2018). Accessed January 14, 2019.

URL    
16
Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel[J]. Blood, 2017, 129(4): 424-447.
17
Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes[J]. Blood, 2009, 114(5): 937-951.
18
Lin LI, Chen CY, Lin DT, et al. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells[J]. Clin Cancer Res, 2005, 11(4): 1372-1379.
19
Rau R, Brown P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity[J]. Hematol Oncol, 2009, 27(4): 171-181.
20
Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia[J]. Blood, 1999, 93(9): 3074-3080.
21
中华医学会血液学分会. 成人急性髓系白血病(非急性早幼粒细胞白血病)中国诊疗指南(2011年版)[J]. 中华血液学杂志, 2011, 32(11): 804-807.
22
Omori I, Yamaguchi H, Miyake K, et al. D816V mutation in the KIT gene activation loop has greater cell-proliferative and anti-apoptotic ability than N822K mutation in core-binding factor acute myeloid leukemia[J]. Exp Hematol, 2017, 52: 56-64, e4.
23
Heo SK, Noh EK, Kim JY, et al. Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells[J]. Eur J Pharmacol, 2017, 804: 52-56.
24
Motyckova G, Stone RM. The role of molecular tests in acute myelogenous leukemia treatment decisions[J]. Curr Hematol Malig Rep, 2010, 5(2): 109-117.
25
Tan Y, Liu Z, Wang W, et al. Monitoring of clonal evolution of double C-KIT exon 17 mutations by Droplet Digital PCR in patients with core-binding factor acute myeloid leukemia[J]. Leuk Res, 2018, 69: 89-93.
26
Ayatollahi H, Shajiei A, Sadeghian MH, et al. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review[J]. Hematol Oncol Stem Cell Ther, 2017, 10(1): 1-7.
27
Yui S, Kurosawa S, Yamaguchi H, et al. D816 mutation of the KIT gene in core binding factor acute myeloid leukemia is associated with poorer prognosis than other KIT gene mutations[J]. Ann Hematol, 2017, 96(10): 1641-1652.
28
Duployez N, Marceau-Renaut A, Boissel N, et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia[J]. Blood, 2016, 127(20): 2451-2459.
29
Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML)[J]. Leukemia, 2006, 20(6): 965-970.
30
Allen C, Hills RK, Lamb K, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia[J]. Leukemia, 2013, 27(9): 1891-1901.
31
Paschka P, Du J, Schlenk RF, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group (AMLSG)[J]. Blood, 2013, 121(1): 170-177.
32
Opatz S, Polzer H, Herold T, et al. Exome sequencing identifies recurring FLT3 N676K mutations in core-binding factor leukemia[J]. Blood, 2013, 122(10): 1761-1769.
33
Jourdan E, Boissel N, Chevret S, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia[J]. Blood, 2013, 121(12): 2213-2223.
[1] 应康, 杨璨莹, 刘凤珍, 陈丽丽, 刘燕娜. 左心室心肌应变对无症状重度主动脉瓣狭窄患者的预后评估价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 581-587.
[2] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[3] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[4] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[5] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[6] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[7] 鲁鑫, 许佳怡, 刘洋, 杨琴, 鞠雯雯, 徐缨龙. 早期LC术与PTCD续贯LC术治疗急性胆囊炎对患者肝功能及预后的影响比较[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 648-650.
[8] 潘冰, 吕少诚, 赵昕, 李立新, 郎韧, 贺强. 淋巴结清扫数目对远端胆管癌胰十二指肠切除手术疗效的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 608-612.
[9] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[10] 张文华, 陶焠, 胡添松. 不同部位外生型肝癌临床病理特点及其对术后肝内复发和预后影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 651-655.
[11] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[12] 叶文涛, 吴忠均, 廖锐. 癌旁组织ALOX15表达与肝癌根治性切除术后预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 708-712.
[13] 李永胜, 孙家和, 郭书伟, 卢义康, 刘洪洲. 高龄结直肠癌患者根治术后短期并发症及其影响因素[J]. 中华临床医师杂志(电子版), 2023, 17(9): 962-967.
[14] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
[15] 索利斌, 刘鲲鹏, 姚兰, 张华, 魏越, 王军, 陈骏, 苗成利, 罗成华. 原发性腹膜后副神经节瘤切除术麻醉管理的特点和分析[J]. 中华临床医师杂志(电子版), 2023, 17(07): 771-776.
阅读次数
全文


摘要