切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 306 -309. doi: 10.3877/cma.j.issn.1674-0785.2020.04.013

所属专题: 文献

综述

18F-FDG PET-CT在食管癌放射治疗靶区勾画中的应用进展
刘红丽1, 许雪冬2, 邵倩3,()   
  1. 1. 250102 济南大学山东省医学科学院医学与生命科学学院 济宁肿瘤医院肿瘤三科
    2. 271000 山东泰安,泰山医学院
    3. 250117 济南,山东省肿瘤防治研究院(山东省肿瘤医院)放疗科,山东第一医科大学(山东省医学科学院)
  • 收稿日期:2019-03-16 出版日期:2020-04-15
  • 通信作者: 邵倩

Application of 18F-FDG PET-CT in delineation of target volume for radiotherapy of esophageal cancer

Hongli Liu1, Xuedong Xu2, Qian Shao3,()   

  1. 1. School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences; the Third Department of Oncology, Jining Tumor Hospital, Jinan 250102, China
    2. Taishan Medical University, 271000 Tai’an, China
    3. Department of Radiation Oncology, Shandong Cancer Research Institute (Shandong Cancer Hospital), Shangdong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
  • Received:2019-03-16 Published:2020-04-15
  • Corresponding author: Qian Shao
  • About author:
    Corresponding author: Shao Qian, Email:
引用本文:

刘红丽, 许雪冬, 邵倩. 18F-FDG PET-CT在食管癌放射治疗靶区勾画中的应用进展[J]. 中华临床医师杂志(电子版), 2020, 14(04): 306-309.

Hongli Liu, Xuedong Xu, Qian Shao. Application of 18F-FDG PET-CT in delineation of target volume for radiotherapy of esophageal cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(04): 306-309.

放射治疗是食管癌的重要治疗方法,而精准的靶区勾画是决定放射治疗疗效的前提和基础,靶区勾画是以CT为基础的多种影像学信息资料,本文将对正电子发射断层显像(PET-CT)分子功能影像在食管癌及其转移淋巴结的靶区勾画中的应用进行综述,以充分发挥PET-CT在食管癌原发病灶及淋巴结转移靶区勾画方面的重要作用。

Radiotherapy is an important treatment for esophageal cancer, and accurate delineation of target volume is the premise and basis for ensuring the efficacy of radiotherapy. The delineation of target volume is based on a variety of computed tomography (CT) imaging information. This paper will review the application of positron emission tomography/CT (PET-CT) in the delineation of target volume for radiotherapy of esophageal cancer and its metastatic lymph nodes, with an aim to emphasize the important role of PET-CT in delineating the primary lesion and lymph node metastasis of esophageal cancer.

1
Zhang G, Han D, Yin Y. Using the Gradient-based Method to Delineate the Primary GTV on FLT-PET in Esophageal Carcinoma and Discussing the Influence on Radiotherapy Planning[J]. Int J Radiat Oncol Biol Phys, 2011, 81(2 Suppl): S315-S316.
2
Buchmann I, Haberkorn U, Schmidtmann I, et al. Influence of cell proportions and proliferation rates on FDG uptake in squamous-cell esophageal carcinoma: a PET study[J]. Cancer Biother Radiopharma, 2008, 23(2): 172-180.
3
Han DL. Pathological validation of FLT PET-CT in delineating the biological target length of gross tumor in esophageal carcinoma[J]. Chinese Tournal of Radiation Oncology, 2010.
4
钟小军, 于金明, 张百江, 等. FDG PET-CT靶区勾画方法在食管癌中的比较及病理对照研究[J]. 中华放射肿瘤学杂志, 2008, 17(1): 22-25.
5
Han D, Yu J, Yu Y, et al. Comparison of (18) F-fluorothymidine and (18) F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus[J]. Int J Radiat Oncol Biol Phys, 2010, 76(4): 1235-1241.
6
Vali FS, Nagda S, Hall W, et al. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy[J]. Int J Radiat Oncol Biol Phys, 2010, 78(4): 1057-1063.
7
Biehl KJ, Kong FM, Dehdashti F, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small celllung cancer: is a single standardized uptake value threshold approach appropriate?[J]. J Nucl Med, 2006, 47(11): 1808-1812.
8
Nestle U, Kremp S, Schaefer-Schuler A, et al. Comparison of different methods for delineation of 18F-FDG PET positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cacer[J]. J Nucl Med, 2005, 46(8): 1342-1348.
9
Yu W, Fu XI, Zhang YJ, et al. GTV spatial conformity between different delineation methods by 18F-FDG PET/CT and pathology in esophageal cancer[J]. Radiother Oncol, 2009, 93(3): 441-446.
10
Mamede M, EI Fakhri G, ABREU-E-Lima P, et al. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation[J]. Ann Nucl Med, 2007, 21(10): 553-562.
11
Moureau-Zabotto L, Touboul E, Lerouge D, et al. Impact of CT and 18F-fluoro-deoxyglucose positron emission tomography image fusion for conformal radiotherapy in esophageal cancinoma[J]. Int J Radiat Oncol Biol Phys, 2005, 63(2): 340-345.
12
Jeganathan R, McGuigan J, Campbell F, et al. Does pre-operative estimation of oesophageal tumor metabolic length using 18F-fluoro-deoxyglucose PET/CTimages compare with surgical pathology length?[J]. Eur J Nucl Med Mol imaging, 2011, 38(4): 656-662.
13
Vrieze O, Haustermans K, De Wever W, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma?[J]. Radiother Oncol, 2004, 73(3): 269-275.
14
Caldwell CB, Mah K, Skinner M, et al. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitation of CT and the promise of PET[J]. Int J Radiat Oncol Biol Phys, 2003, 55(5): 1381-1393.
15
Okubo M, Nishimura Y, Nakamatsu K, et al. Static and moving phantom studies for radiation treatment planning in a positron emission tomography and computed tomography (PET/CT) system[J]. Ann Nucl Med, 2008, 22(7): 579-586.
16
Hanna GG, van Sörnsen de Koste JR, Dahele MR, et al. Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumours: a comparison of three-dimensional 18F-fluorodeoxyglucose positron emission tomography and four-dimensional computed tomography[J]. Clinical oncology, 2012, 24(6): e71-e80.
17
Nestle U, Schaefer-Schuler A, Kremp S, et al. Target vol-ume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2007, 34(4): 453-462.
18
郭洪波, 于金明, 张百江, 等. 氟脱氧葡萄糖PET-CT确定食管癌淋巴结放疗靶区的可行性研究[J]. 中华放射肿瘤学杂志, 2007, 16(1): 10-14.
19
张建东, 于金明, 郭洪波, 等. PET/CT确定进展期食管癌临床分期价值的探讨[J]. 中华肿瘤防治杂志, 2009, 16(23): 1875-1877.
20
Minamimoto R, Senda M, Jinnouchi S, et al. Detection of lung cancer by FDG-PET cancer screening program: a nationwide Japanese survey[J]. Anticancer Res, 2014, 34(1): 183-189.
21
Shakespear W. FDG-PET in Oncology: There′s more to it than looking at picture[J]. J Nucl Med, 1993, 34(1): 6-11.
22
赵军, 林祥通, 管一晖, 等. 双时相PET现象在肺良恶性病变鉴别诊断中的应用[J]. 中华核医学杂志, 2003, 23(1): 8-10.
23
Lindholm P, Minn H, Leskinen-Kallio S, et al. Influence of the blood glucose concentration on FDG uptake in cancer-a PET study[J]. J Nucl Med, 1993, 34(1): 1-6.
24
Schmucking M, Baum RP, Bonnet R, et al. Correlation of histologic results with PET findings for tumor regression and survival in locally advanced non-small cell lung cancer after neoadjuvant treatment[J]. Pathology, 2005, 26(3): 178-189.
25
Adli M, Caglayan D, Koc M, et al. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT) Maximum Standardized Uptake Value (SUVmax) as a Prognostic Factor in Non-Hodgkin Lymphoma Patients[J]. Int J Radiat Oncol Biol Phys, 2013, 87(2): S555-S556.
26
Bettinardi V, Picchio M, Di Muzio N, et al. Detection and compensation of organ/lesion motion using 4D-PET/CT respiratory gated acquisition techniques[J]. Radiother Oncol, 2010, 96(3): 311-316.
27
Wolthaus JW, van Herk M, Muller SH, et al. Fusion of respiration -correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans[J]. Phys Med Biol, 2005, 50(7): 1569-1583.
28
Ciernik IF, Dizendorf E, Baumert BG, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study[J]. Int J Radiat Oncol Biol Phys, 2003, 57(3): 853-863.
29
Lagergren J, Smyth E, Cunningham D, et al. Oesophageal cancer[J]. Lancet, 2017, 390(10110): 2383-2396.
30
刘琪, 余雯, 蔡旭伟, 等. PET-CT用于评价食管鳞癌放疗中18F-FDG高摄取区域的空间动态变化的前瞻性研究[J]. 中国癌症杂志, 2016, 26(2): 161-167.
31
顾飞英, 蒋晨雪, 许亚萍, 等. FDG PET-CT在食管癌放化疗中的应用[J]. 中华放射肿瘤学杂志, 2017, 26(8): 961-964.
32
叶建平. (18)FDG PET-CT诊断食管癌淋巴结转移的优势及确定淋巴结放疗靶区的可行性分析[J]. 影像研究与医学应用, 2018, 2(12): 73-75.
[1] 江泽莹, 王安婷, 王姣丽, 陈慈, 周秋玲, 黄燕娟, 周芳, 薛琰, 周剑烽, 谭文勇, 杜美芳. 多种植物油组分预防肿瘤放化疗相关毒性反应的效果分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 523-527.
[2] 高加林, 曹亚娟. 腹腔镜解剖性肝右后叶切除治疗食管癌根治术后孤立性肝转移[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 239-242.
[3] 钟东. 大脑凸面脑膜瘤的个体化全程管理[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 193-198.
[4] 侯超, 潘美辰, 吴文明, 黄兴广, 李翔, 程凌雪, 朱玉轩, 李文波. 早期食管癌及上皮内瘤变内镜黏膜下剥离术后食管狭窄的危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 383-387.
[5] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[6] 苏鹏, 吕会来, 温士旺, 黄超, 张缜, 田子强. 全腔镜下食管癌根治术围手术期呼吸系统并发症发生的危险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 294-298.
[7] 曹旬旬, 费素娟. 食管癌患者肿瘤组织CXCL5和CXCR2的表达与病情和预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 299-304.
[8] 屠松霞, 郑红艳, 朱姝, 徐夏君. 食管癌术后患者肠内营养耐受不良的影响因素及列线图风险模型[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 73-77.
[9] 黄文鹏, 邱永康, 杨琦, 宋乐乐, 陈钊, 范岩, 康磊. PET相关影像组学在肿瘤预后中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 104-110.
[10] 吕喆, 高庆坤, 常天静, 董含微, 王晓鹏, 那曼丽, 张滨. 磁共振3D-T2WI-FFE序列结合曲面重组观察直肠癌放疗对骶神经形态的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 513-518.
[11] 陈柯豫, 黄艳齐, 张玲利. 同时性多发早期食管癌及高级别上皮内瘤变的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(05): 524-528.
[12] 秦建军, 郭旭峰, 胡杨, 李向楠, 李卓毅, 林江波, 梅新宇, 唐鹏, 王长春, 王枫, 王洪琰, 尹俊, 袁勇, 赵晋波, 李志刚, 李印. 日本2022版食管癌诊治指南在中国的接受度——中国红杉树专家调研[J]. 中华胸部外科电子杂志, 2023, 10(04): 195-199.
[13] 李正龙, 赵永生, 罗钶鑫, 彭忠勤. 胸腔镜切除治疗全内脏反位合并食管癌手术1例并文献复习[J]. 中华胸部外科电子杂志, 2023, 10(04): 234-237.
[14] 孙天宇, 王如文, 蒋彬. 食管碰撞癌1例[J]. 中华胸部外科电子杂志, 2023, 10(04): 238-240.
[15] 李国仁, 戴建华. 我国食管癌治疗理念与模式的沿革和进展[J]. 中华胸部外科电子杂志, 2023, 10(02): 117-125.
阅读次数
全文


摘要