1 |
Turner JR. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809.
|
2 |
Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease [J]. Expert Rev Gastroenterol Hepatol, 2017, 11(9): 821-834.
|
3 |
Nalle SC, Turner JR. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease [J]. Mucosal Immunol, 2015, 8(4): 720-30.
|
4 |
Nagpal R, Yadav H. Bacterial Translocation from the gut to the distant organs: an overview [J]. Ann Nutr Metab, 2017, 71 Suppl 1: 11-16.
|
5 |
Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens [J]. Nat Rev Immunol, 2003, 3(4): 331-341.
|
6 |
黎介寿. 肠衰竭—概念、营养支持与肠粘膜屏障维护 [J]. 中国临床营养杂志, 2004, 12(3): 155-8.
|
7 |
Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing [J]. Annu Rev Immunol, 2017, 35: 119-147.
|
8 |
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis [J]. J Allergy Clin Immunol, 2009, 124(1): 3-20; quiz 1-2.
|
9 |
Edelblum KL, Turner JR. The tight junction in inflammatory disease: communication breakdown [J]. Curr Opin Pharmacol, 2009, 9(6): 715-720.
URL
|
10 |
Fuladi S, Jannat RW, Shen L, et al. Computational Modeling of Claudin Structure and Function [J]. Int J Mol Sci, 2020, 21(3): 742.
|
11 |
Jin Y, Ibrahim D, Magness ST, et al. Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity [J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(6): G966-G979.
|
12 |
Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, et al. The intestinal barrier function and its involvement in digestive disease [J]. Rev Esp Enferm Dig, 2015, 107(11): 686-696.
|
13 |
Kojima T, Murata M, Go M, et al. Connexins induce and maintain tight junctions in epithelial cells [J]. J Membr Biol, 2007, 217(1-3): 13-19.
|
14 |
Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions [J]. Proc Natl Acad Sci USA, 2011, 108 (Suppl 1): 4659-4665.
|
15 |
Pelaseyed T, Bergstrom JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system [J]. Immunol Rev, 2014, 260(1): 8-20.
|
16 |
Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease [J]. Front Immunol, 2012, 3: 310.
|
17 |
Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut [J]. Crit Rev Biochem Mol Biol, 2017, 52(1): 45-56.
|
18 |
Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses [J]. Immunity, 2008, 28(6): 740-750.
URL
|
19 |
Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis [J]. FEMS Immunol Med Microbiol, 2008, 52(1): 2-12.
|
20 |
Gill N, Wlodarska M, Finlay BB. Roadblocks in the gut: barriers to enteric infection [J]. Cell Microbiol, 2011, 13(5): 660-669.
URL
|
21 |
Castoldi A, Favero de Aguiar C, Moraes-Vieira PM, et al. They must hold tight: junction proteins, microbiota and immunity in intestinal mucosa [J]. Curr Protein Pept Sci, 2015, 16(7): 655-671.
|
22 |
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life [J]. Tissue Barriers, 2017, 5(4): e1373208.
|
23 |
Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota [J]. Gastroenterol Rep (Oxf), 2019, 7(1): 3-12.
|
24 |
Haussner F, Chakraborty S, Halbgebauer R, et al. Challenge to the Intestinal Mucosa During Sepsis [J]. Front Immunol, 2019, 10: 891.
|
25 |
Wells JM, Brummer RJ, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers [J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(3): G171-G193.
|
26 |
Kanoore edul VS, Dubin A, Ince C. The microcirculation as a therapeutic target in the treatment of sepsis and shock [J]. Semin Respir Crit Care Med, 2011, 32(5): 558-568.
|
27 |
Wang L, Bastarache JA, Ware LB. The coagulation cascade in sepsis [J]. Curr Pharm Des, 2008, 14(19): 1860-1869.
|
28 |
Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response [J]. Curr Opin Crit Care, 2011, 17(2): 153-159.
URL
|
29 |
Defazio J, Fleming ID, Shakhsheer B, et al. The opposing forces of the intestinal microbiome and the emerging pathobiome [J]. Surg Clin North Am, 2014, 94(6): 1151-1161.
|
30 |
Jiang LY, Zhang M, Zhou TE, et al. Changes of the immunological barrier of intestinal mucosa in rats with sepsis [J]. World J Emerg Med, 2010, 1(2): 138-143.
|
31 |
Chang RM, Wen LQ, Chang JX, et al. Repair of damaged intestinal mucosa in a mouse model of sepsis [J]. World J Emerg Med, 2013, 4(3): 223-228.
|
32 |
Farooq PD, Urrunaga NH, Tang DM, et al. Pseudomembranous colitis [J]. Dis Mon, 2015, 61(5): 181-206.
|
33 |
Rodriguez C, Taminiau B, Van broeck J, et al. Clostridium difficile infection and intestinal microbiota interactions [J]. Microb Pathog, 2015, 89: 201-209.
|
34 |
Fachi JL, Felipe JS, Pral LP, et al. Butyrate protects mice from clostridium difficile-induced colitis through an HIF-1-dependent mechanism [J]. Cell Rep, 2019, 27(3): 750-761, e7.
|
35 |
Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile [J]. Nature, 2015, 517(7533): 205-208.
|
36 |
Schubert AM, Rogers MAM, Ring C, et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls [J]. mBio, 2014, 5(3): e01021-14.
|
37 |
Van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile [J]. N Engl J Med, 2013, 368(5): 407-415.
|
38 |
Podolsky DK. Inflammatory bowel disease (1) [J]. N Engl J Med, 1991, 325(13): 928-037.
|
39 |
Ventham NT, Kennedy NA, Nimmo ER, et al. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics [J]. Gastroenterology, 2013, 145(2): 293-308.
URL
|
40 |
Grill JI, Neumann J, Hiltwein F, et al. Intestinal E-cadherin deficiency aggravates dextran sodium sulfate-induced colitis [J]. Dig Dis Sci, 2015, 60(4): 895-902.
|
41 |
Tanaka H, Takechi M, Kiyonari H, et al. Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice [J]. Gut, 2015, 64(10): 1529-1538.
|
42 |
Laukoetter MG, Nava P, Lee WY, et al. JAM-A regulates permeability and inflammation in the intestine in vivo [J]. J Exp Med, 2007, 204(13): 3067-3076.
|
43 |
Vetrano S, Rescigno M, Cera MR, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease [J]. Gastroenterology, 2008, 135(1): 173-184.
|
44 |
Wang F, Graham WV, Wang Y, et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression [J]. Am J Pathol, 2005, 166(2): 409-419.
|
45 |
Suenaert P, Bulteel V, Lemmens L, et al. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn′s disease [J]. Am J Gastroenterol, 2002, 97(8): 2000-2004.
|
46 |
Allais L, Kerckhof FM, Verschuere S, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut [J]. Environ Microbiol, 2016, 18(5): 1352-1363.
|
47 |
Fricker M, Goggins BJ, Mateer S, et al. Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction [J]. JCI Insight, 2018, 3(3): pii 94040.
|
48 |
Bull-Otterson L, Feng W, Kirpich I, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment [J]. PLoS One, 2013, 8(1): e53028.
|
49 |
Fleming S, Toratani S, Shea-Donohue T, et al. Pro- and anti-inflammatory gene expression in the murine small intestine and liver after chronic exposure to alcohol [J]. Alcohol Clin Exp Res, 2001, 25(4): 579-589.
|
50 |
Malaguarnera G, Giordano M, Nunnari G, et al. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives [J]. World J Gastroenterol, 2014, 20(44): 16639-16648.
|
51 |
Wang DQ, Carey MC. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review [J]. World J Gastroenterol, 2014, 20(29): 9952-9975.
|
52 |
Hegyi P, Maleth J, Walters JR, et al. Guts and gall: bile acids in regulation of intestinal epithelial function in health and disease [J]. Physiol Rev, 2018, 98(4): 1983-2023.
|
53 |
Merchant NB, Rogers CM, Trivedi B, et al. Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells [J]. Surgery, 2005, 138(3): 415-421.
|
54 |
Raimondi F, Santoro P, Barone MV, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation [J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(4): G906-G913.
|
55 |
König J, Wells J, Cani PD, et al. Human Intestinal Barrier Function in Health and Disease [J]. Clin Transl Gastroenterol, 2016, 7(10): e196.
|
56 |
Vanuytsel T, Van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism [J]. Gut, 2014, 63(8): 1293-1299.
URL
|
57 |
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, et al. Role of corticotropin-releasing factor in gastrointestinal permeability [J]. J Neurogastroenterol Motil, 2015, 21(1): 33-50.
|
58 |
Stevens BR, Goel R, Seungbum K, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression [J]. Gut, 2018, 67(8): 1555-1557.
|