切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (09) : 735 -739. doi: 10.3877/cma.j.issn.1674-0785.2020.09.014

所属专题: 文献

综述

肠黏膜屏障功能及损伤机制研究进展
牛鹏飞1, 王延召1, 曾庆敏1, 雷福明1,()   
  1. 1. 100144 北京大学首钢医院胃肠外科
  • 收稿日期:2020-03-10 出版日期:2020-09-15
  • 通信作者: 雷福明

Progress in research of intestinal mucosal barrier function and its dysfunction mechanisms

Pengfei Niu1, Yanzhao Wang1, Qingmin Zeng1, Fuming Lei1,()   

  1. 1. Department of Gastrointestinal Surgery, Shougang Hospital, Peking University, Beijing 100144, China
  • Received:2020-03-10 Published:2020-09-15
  • Corresponding author: Fuming Lei
  • About author:
    Corresponding author: Lei Fuming, Email:
引用本文:

牛鹏飞, 王延召, 曾庆敏, 雷福明. 肠黏膜屏障功能及损伤机制研究进展[J/OL]. 中华临床医师杂志(电子版), 2020, 14(09): 735-739.

Pengfei Niu, Yanzhao Wang, Qingmin Zeng, Fuming Lei. Progress in research of intestinal mucosal barrier function and its dysfunction mechanisms[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(09): 735-739.

肠黏膜屏障由肠上皮细胞和细胞外成分共同组成,具有结构复杂和功能多样的特点。肠黏膜屏障以动态变化的形式,在机体消化过程中选择性地吸收水和营养物质、阻止肠道细菌异位、发挥肠道免疫功能,以协助机体维持肠道的完整性和免疫稳态。导致肠黏膜屏障功能紊乱的病因如慢性炎症、菌群失调、环境因素改变等,可独立或协同引发生化级联反应,导致慢性炎症的发生,进一步可导致多种肠道疾病如炎症性肠病、肠易激综合征、结肠恶性肿瘤以及一部分肠外疾病(如慢性非酒精性肝病、1型糖尿病、肥胖等)。了解肠黏膜屏障的损伤机制,对于研究肠道疾病或肠外相关疾病具有重要意义。

The intestinal mucosal barrier is composed of intestinal epithelial cells and extracellular components, which has the characteristics of complex structure and diverse functions. In the form of dynamic changes, the intestinal mucosa barrier selectively absorbs water and nutrients, prevents intestinal bacterial translocation, and has intestinal immune function in the process of digestion, so as to help the body maintain the integrity of the intestinal tract and immune homeostasis. The causes of intestinal mucosal barrier dysfunction, such as chronic inflammation, dysbacteriosis, and changes in environmental factors, can independently or collaboratively cause biochemical cascade reactions, leading to the occurrence of chronic inflammation and a variety of intestinal diseases, such as inflammatory bowel disease, irritable bowel syndrome, colonic cancer, and some extraintestinal diseases (such as chronic nonalcoholic liver disease, type I diabetes, and obesity). It is of great significance to understand the mechanism of intestinal mucosal barrier dysfunction for the study of intestinal diseases or extraintestinal related diseases.

1
Turner JR. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9(11): 799-809.
2
Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease [J]. Expert Rev Gastroenterol Hepatol, 2017, 11(9): 821-834.
3
Nalle SC, Turner JR. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease [J]. Mucosal Immunol, 2015, 8(4): 720-30.
4
Nagpal R, Yadav H. Bacterial Translocation from the gut to the distant organs: an overview [J]. Ann Nutr Metab, 2017, 71 Suppl 1: 11-16.
5
Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens [J]. Nat Rev Immunol, 2003, 3(4): 331-341.
6
黎介寿. 肠衰竭—概念、营养支持与肠粘膜屏障维护 [J]. 中国临床营养杂志, 2004, 12(3): 155-8.
7
Kurashima Y, Kiyono H. Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing [J]. Annu Rev Immunol, 2017, 35: 119-147.
8
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis [J]. J Allergy Clin Immunol, 2009, 124(1): 3-20; quiz 1-2.
9
Edelblum KL, Turner JR. The tight junction in inflammatory disease: communication breakdown [J]. Curr Opin Pharmacol, 2009, 9(6): 715-720.

URL    
10
Fuladi S, Jannat RW, Shen L, et al. Computational Modeling of Claudin Structure and Function [J]. Int J Mol Sci, 2020, 21(3): 742.
11
Jin Y, Ibrahim D, Magness ST, et al. Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity [J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(6): G966-G979.
12
Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, et al. The intestinal barrier function and its involvement in digestive disease [J]. Rev Esp Enferm Dig, 2015, 107(11): 686-696.
13
Kojima T, Murata M, Go M, et al. Connexins induce and maintain tight junctions in epithelial cells [J]. J Membr Biol, 2007, 217(1-3): 13-19.
14
Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions [J]. Proc Natl Acad Sci USA, 2011, 108 (Suppl 1): 4659-4665.
15
Pelaseyed T, Bergstrom JH, Gustafsson JK, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system [J]. Immunol Rev, 2014, 260(1): 8-20.
16
Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease [J]. Front Immunol, 2012, 3: 310.
17
Chairatana P, Nolan EM. Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut [J]. Crit Rev Biochem Mol Biol, 2017, 52(1): 45-56.
18
Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses [J]. Immunity, 2008, 28(6): 740-750.

URL    
19
Corr SC, Gahan CC, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis [J]. FEMS Immunol Med Microbiol, 2008, 52(1): 2-12.
20
Gill N, Wlodarska M, Finlay BB. Roadblocks in the gut: barriers to enteric infection [J]. Cell Microbiol, 2011, 13(5): 660-669.

URL    
21
Castoldi A, Favero de Aguiar C, Moraes-Vieira PM, et al. They must hold tight: junction proteins, microbiota and immunity in intestinal mucosa [J]. Curr Protein Pept Sci, 2015, 16(7): 655-671.
22
Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life [J]. Tissue Barriers, 2017, 5(4): e1373208.
23
Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota [J]. Gastroenterol Rep (Oxf), 2019, 7(1): 3-12.
24
Haussner F, Chakraborty S, Halbgebauer R, et al. Challenge to the Intestinal Mucosa During Sepsis [J]. Front Immunol, 2019, 10: 891.
25
Wells JM, Brummer RJ, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers [J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(3): G171-G193.
26
Kanoore edul VS, Dubin A, Ince C. The microcirculation as a therapeutic target in the treatment of sepsis and shock [J]. Semin Respir Crit Care Med, 2011, 32(5): 558-568.
27
Wang L, Bastarache JA, Ware LB. The coagulation cascade in sepsis [J]. Curr Pharm Des, 2008, 14(19): 1860-1869.
28
Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response [J]. Curr Opin Crit Care, 2011, 17(2): 153-159.

URL    
29
Defazio J, Fleming ID, Shakhsheer B, et al. The opposing forces of the intestinal microbiome and the emerging pathobiome [J]. Surg Clin North Am, 2014, 94(6): 1151-1161.
30
Jiang LY, Zhang M, Zhou TE, et al. Changes of the immunological barrier of intestinal mucosa in rats with sepsis [J]. World J Emerg Med, 2010, 1(2): 138-143.
31
Chang RM, Wen LQ, Chang JX, et al. Repair of damaged intestinal mucosa in a mouse model of sepsis [J]. World J Emerg Med, 2013, 4(3): 223-228.
32
Farooq PD, Urrunaga NH, Tang DM, et al. Pseudomembranous colitis [J]. Dis Mon, 2015, 61(5): 181-206.
33
Rodriguez C, Taminiau B, Van broeck J, et al. Clostridium difficile infection and intestinal microbiota interactions [J]. Microb Pathog, 2015, 89: 201-209.
34
Fachi JL, Felipe JS, Pral LP, et al. Butyrate protects mice from clostridium difficile-induced colitis through an HIF-1-dependent mechanism [J]. Cell Rep, 2019, 27(3): 750-761, e7.
35
Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile [J]. Nature, 2015, 517(7533): 205-208.
36
Schubert AM, Rogers MAM, Ring C, et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls [J]. mBio, 2014, 5(3): e01021-14.
37
Van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile [J]. N Engl J Med, 2013, 368(5): 407-415.
38
Podolsky DK. Inflammatory bowel disease (1) [J]. N Engl J Med, 1991, 325(13): 928-037.
39
Ventham NT, Kennedy NA, Nimmo ER, et al. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics [J]. Gastroenterology, 2013, 145(2): 293-308.

URL    
40
Grill JI, Neumann J, Hiltwein F, et al. Intestinal E-cadherin deficiency aggravates dextran sodium sulfate-induced colitis [J]. Dig Dis Sci, 2015, 60(4): 895-902.
41
Tanaka H, Takechi M, Kiyonari H, et al. Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice [J]. Gut, 2015, 64(10): 1529-1538.
42
Laukoetter MG, Nava P, Lee WY, et al. JAM-A regulates permeability and inflammation in the intestine in vivo [J]. J Exp Med, 2007, 204(13): 3067-3076.
43
Vetrano S, Rescigno M, Cera MR, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease [J]. Gastroenterology, 2008, 135(1): 173-184.
44
Wang F, Graham WV, Wang Y, et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression [J]. Am J Pathol, 2005, 166(2): 409-419.
45
Suenaert P, Bulteel V, Lemmens L, et al. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn′s disease [J]. Am J Gastroenterol, 2002, 97(8): 2000-2004.
46
Allais L, Kerckhof FM, Verschuere S, et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut [J]. Environ Microbiol, 2016, 18(5): 1352-1363.
47
Fricker M, Goggins BJ, Mateer S, et al. Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction [J]. JCI Insight, 2018, 3(3): pii 94040.
48
Bull-Otterson L, Feng W, Kirpich I, et al. Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment [J]. PLoS One, 2013, 8(1): e53028.
49
Fleming S, Toratani S, Shea-Donohue T, et al. Pro- and anti-inflammatory gene expression in the murine small intestine and liver after chronic exposure to alcohol [J]. Alcohol Clin Exp Res, 2001, 25(4): 579-589.
50
Malaguarnera G, Giordano M, Nunnari G, et al. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives [J]. World J Gastroenterol, 2014, 20(44): 16639-16648.
51
Wang DQ, Carey MC. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review [J]. World J Gastroenterol, 2014, 20(29): 9952-9975.
52
Hegyi P, Maleth J, Walters JR, et al. Guts and gall: bile acids in regulation of intestinal epithelial function in health and disease [J]. Physiol Rev, 2018, 98(4): 1983-2023.
53
Merchant NB, Rogers CM, Trivedi B, et al. Ligand-dependent activation of the epidermal growth factor receptor by secondary bile acids in polarizing colon cancer cells [J]. Surgery, 2005, 138(3): 415-421.
54
Raimondi F, Santoro P, Barone MV, et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation [J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(4): G906-G913.
55
König J, Wells J, Cani PD, et al. Human Intestinal Barrier Function in Health and Disease [J]. Clin Transl Gastroenterol, 2016, 7(10): e196.
56
Vanuytsel T, Van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism [J]. Gut, 2014, 63(8): 1293-1299.

URL    
57
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, et al. Role of corticotropin-releasing factor in gastrointestinal permeability [J]. J Neurogastroenterol Motil, 2015, 21(1): 33-50.
58
Stevens BR, Goel R, Seungbum K, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression [J]. Gut, 2018, 67(8): 1555-1557.
[1] 闫泽辉, 狄靖凯, 郭子瑊, 穆昶江, 张智博, 陈帅, 王泽华, 田最, 向川. 膝关节机械感受器在半月板损伤中的功能[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 524-531.
[2] 田志敏, 何淳诺, 李焕玺, 吴昊越, 刘鹏, 乔永杰, 周胜虎, 蓝平衡, 郭氧, 张浩强. 股骨头坏死动物模型研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 383-389.
[3] 刘清, 汪志凌. 肠道真菌与儿童炎症性肠病[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 172-178.
[4] 王刚, 李涛, 刘玉芳. 胃癌根治手术后行抗菌药物治疗对患者肠道细菌移位及肠黏膜屏障功能的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 141-145.
[5] 寇宛婷, 蔡英华, 周海琴, 吴琼. 肺移植术后谵妄影响因素的范围综述[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 251-256.
[6] 李绍杰, 谢奇峰, 李绍春, 杨子昂, 黄永刚, 陈吉彩, 杜舟, 王平, 张剑, 唐健雄. 复合基底膜生物补片应用于腹股沟疝Lichtenstein修补术的随机、对照、多中心临床研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 132-138.
[7] 陈利, 王锦海, 董浩男, 李利军. 锁骨钩钢板在肩锁关节脱位治疗中的不足及改良[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 377-381.
[8] 吴孝琦, 罗飞, 史凡凡, 方青. 移动健康在慢性肌肉骨骼疼痛患者自我管理中的应用进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 251-256.
[9] 韦小霞, 陈管洁, 李雪珠, 李晓青, 钱淑媛. 机械通气患者抗菌药物雾化吸入的临床实施[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 334-337.
[10] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[11] 楚海强, 杨远游, 任刚. 胰腺癌放射治疗联合其他治疗方法的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 392-396.
[12] 蔡雨玲, 王刚, 江志伟. 针刺应用于术后肠麻痹的研究进展[J/OL]. 中华针灸电子杂志, 2024, 13(04): 164-168.
[13] 周微薇, 罗宇, 何朝晖. 解释消化内镜在职护士培训的现实主义整合[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(04): 276-281.
[14] 李立亚, 张丹, 张纪娟, 李长政, 马晓冰, 李萌, 田甜. 十二指肠Brunner腺错构瘤(布氏腺瘤)致反复消化道出血1例并文献复习[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 182-185.
[15] 沈洁, 谢鸿阳, 夏翠俏, 黄勇华. 脑小血管病与认知衰弱的研究现状[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(02): 181-184.
阅读次数
全文


摘要