切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (11) : 931 -936. doi: 10.3877/cma.j.issn.1674-0785.2020.11.016

所属专题: 文献

综述

TGFBI相关颗粒状角膜营养不良的研究进展
李豪亮1, 梁舒1,()   
  1. 1. 226001 江苏南通,南通大学附属医院眼科
  • 收稿日期:2020-05-21 出版日期:2020-11-15
  • 通信作者: 梁舒
  • 基金资助:
    江苏省卫健委科研项目(H2019083)

Advances in research of TGFBI-related granular corneal dystrophy

Haoliang Li1, Shu Liang1,()   

  1. 1. Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
  • Received:2020-05-21 Published:2020-11-15
  • Corresponding author: Shu Liang
引用本文:

李豪亮, 梁舒. TGFBI相关颗粒状角膜营养不良的研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(11): 931-936.

Haoliang Li, Shu Liang. Advances in research of TGFBI-related granular corneal dystrophy[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(11): 931-936.

颗粒状角膜营养不良(GCD)是一组常染色体显性遗传病,属于角膜营养不良中较为常见的一种。研究证实,TGFBI基因突变会导致这一种疾病。TGFBI基因上不同位点的突变又会导致不同类型的GCD。本文结合国内外相关文献,从本病的致病基因、分型及临床表现、发病机制、治疗、展望等方面对TGFBI相关性GCD作较为简要的综述。

Granular corneal dystrophy (GCD) is a group of autosomal dominant genetic diseases and belongs to a more common category of corneal dystrophy. Studies have confirmed that mutations in the TGFBI gene can cause GCD. Mutations at different sites in the TGFBI gene can lead to different types of GCD. By reviewing the relevant literature, we summarize TGFBI-related GCD with regard to its pathogenic genes, typing and clinical manifestations, pathogenesis, and treatment.

11
Folberg R, Alfonso E, Croxatto JO, et al. Clinically atypical granular corneal dystrophy with pathologic features of lattice-like amyloid deposits. A study of these families [J]. Ophthalmology, 1988, 95(1): 46-51.
12
Song JS, Lim DH, Chung ES, et al. Mutation analysis of the TGFBI gene in consecutive Korean patients with corneal dystrophies [J]. Ann Lab Med, 2015, 35(3): 336-340.
13
Yoshida S, Kumano Y, Yoshida A, et al. An analysis of BIGH3 mutations in patients with corneal dystrophies in the Kyusahu district of Japan [J]. Jpn J Ophthalmol, 2002, 46(4): 469-471.
14
Kim HS, Rim TH, Kim TI, et al. Association between visual acuity and the corneal area occupied by granular lesions, linear lesions, or diffuse haze in patients with granular corneal dystrophy type 2 [J]. Cornea, 2018, 37(5): 542-547.
15
Lohse E, Stock EL, Jones JC, et al. Reis-Bücklers' corneal dystrophy. Immunofluorescent and electron microscopic studies [J]. Cornea, 1989, 8(3): 200-209.
16
Yee RW, Sullivan LS, Lai HT, et al. Linkage mapping of Thiel-Behnke corneal dystrophy (CDB2) to chromosome 10q23-q24 [J]. Genomics, 1997, 46(1): 152-154.
17
Yu YH, Qiu PJ, Zhu YN, et al. A novel phenotype-genotype correlation with an Arg555Trp mutation of TGFBI gene in Thiel-Behnke corneal dystrophy in a Chinese pedigree [J]. BMC Ophthalmology, 2015, 15(1): 131.
18
Thapa N, Lee BH, Kim IS. TGFBIp/βig-h3 protein: A versatile matrix molecule induced by TGF-β [J]. Int J Biochem Cell Biol, 2007, 39(12): 2183-2194.
19
Poulsen ET, Nielsen NS, Scavenius C, et al. The serine protease HtrA1 cleaves misfolded transforming growth factor β-induced protein (TGFBIp) and induces amyloid formation [J]. J Biol Chem, 2019, 294(31): 11817-11828.
20
Stenvang M, Schafer NP, Malmos KG, et al. Corneal dystrophy mutations drive pathogenesis by targeting TGFBIp stability and solubility in a latent amyloid-forming domain [J]. J Mol Biol, 2018, 430(8): 1116-1140.
21
Choi SI, Maeng YS, Kim KS, et al. Autophagy is induced by raptor degradation via the ubiquitin/proteasome system in granular corneal dystrophy type 2 [J]. Biochem Biophys Res Commun, 2014, 450(4):1505-1511.
22
Kim SY, Yeo A, Noh H, et al. Downregulation of IL-7 and IL-7R reduces membrane-type matrix metalloproteinase 14 in granular corneal dystrophy type 2 keratocyte [J]. Invest Ophthalmol Vis Sci, 2018, 59(13): 5693-5703.
23
Morand S, Buchillier V, Maurer F, et al. Induction of apoptos is in human corneal and HeLa cells by mutated BIGH3 [J]. Invest Ophthalmol Vis Sci, 2003, 44(7): 2973-2979.
24
Poulsen ET, Nielsen NS, Jensen MM, et al. LASIK surgery of granular corneal dystrophy type 2 patients leads to accumulation and differential proteolytic processing of transforming growth factor beta-induced protein (TGFBIp) [J]. Proteomics, 2016, 16(3): 539-543.
25
Zeng L, Zhao J, Chen Y, et al. Multiple phototherapeutic keratectomy treatments in a Chinese pedigree with corneal dystrophy and an R124L mutation: a 20-year observational study [J]. BMC Ophthalmology, 2019, 19(1): 191.
26
Nakamura T, Kataoka T, Kojima T, et al. Refractive outcomes after phototherapeutic refractive keratectomy for granular corneal dystrophy [J]. Cornea, 2018, 37(5): 548-553.
1
Lin ZN, Chen J, Cui HP. Characteristics of corneal dystrophies: a review from clinical, histological and genetic perspectives [J]. Int J Ophthalmol, 2016, 9(6): 904-913.
2
Weiss JS, Moller HU, Aldave AJ, et al. IC3D classification of corneal dystrophies——edition 2 [J]. Cornea, 2015, 34(2): 117-159.
3
LeBaron RG, Bezverkov KI, Zimber MP, et al. Beta IG-H3, a novel secretory protein inducible by transforming growth factor-beta, is present in normal skin and promotes the adhesion and spreading of dermal fibroblasts in vitro [J]. J Invest Dermatol, 1995, 104(5): 844-849.
4
Munier FL, Schorderet DF. Chromosome 5q31 linked corneal dystrophies: outline for a new classification [J]. Klin Monbl Augenheilkd, 2001, 218(3): 136-139.
5
Ferguson JW, Mikesh MF, Wheeler EF, et al. Developmental expression patterns of Beta-ig (betaIG-H3) and its function as a cell adhesion protein [J]. Mech Dev, 2003, 120(8): 851-864.
6
Guo SK, Shen MF, Yao HW, et al. Enhanced expression of TGFBI promotes the proliferation and migration of glioma cells [J]. Cell Physiol Biochem, 2018, 49(3): 1097-1109.
7
Lee W, Ku SK, Bae JS. Ameliorative effect of vicenin-2 and scolymoside on TGFBIp-induced septic responses [J]. Inflammation, 2015, 38(6): 2166-2177.
8
Hao XD, Zhang YY, Chen P, et al. Uncovering the profile of mutations of transforming growth factor beta-induced gene in Chinese corneal dystrophy patients [J]. Int J Ophthalmol, 2016, 9(2): 198-203.
9
Bouyacoub Y, Falfoul Y, Ouederni M, et al. Granular type I corneal dystrophy in a large consanguineous Tunisian family with homozygous p.R124S mutation in the TGFBI gene [J]. Ophthalmic Genet, 2019, 40(4): 329-337.
10
Kheir V, Cortés-González V, Zenteno JC, et al. Mutation update: TGFBI pathogenic and likely pathogenic variants in corneal dystrophies [J]. Hum Mutat, 2019, 40(6): 675-693.
27
Reda Ahmed. 深板层角膜移植与穿透性角膜移植治疗基质性角膜营养不良 [J]. 国际眼科杂志, 2020, 20(7): 1118-1125.
28
苏慧, 余鹏, 王坤, 等. 深板层角膜移植术治疗基质层角膜营养不良的效果 [J]. 中华眼外伤职业眼病杂志, 2019, 11(11): 818-821.
29
Mashima Y, Kawai M, Yamada M. Corneal electrolysis for recurrence of corneal stromal dystrophy after keratoplasty [J]. Br J Ophthalmol, 2002, 86(3): 273-275.
30
Taketani Y, Kitamoto K, Sakisaka T, et al. Repair of the TGFBI gene in human corneal keratocytes derived from a granular corneal dystrophy patient via CRISPR/Cas9-induced homology-directed repair [J]. Sci Rep, 2017, 7(1): 16713.
31
Salaris F, Rosa A. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities [J]. Brain Res, 2019, 172(3): 146393.
32
Mehta JS, Kocaba V, Soh YQ. The future of keratoplasty: cell-based therapy, regenerative medicine, bioengineering keratoplasty, gene therapy [J]. Curr Opin Ophthalmol, 2019, 30(4): 286-291.
33
Zhou H, Wang Z, Cao H, et al. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering [J]. J Biomater Sci Polym Ed, 2019, 30(17): 1604-1619.
34
Desjardins P, Couture C, Germain L, et al. Contribution of the WNK1 kinase to corneal wound healing using the tissue-engineered human cornea as an in vitro model [J]. J Tissue Eng Regen Med, 2019, 13(9): 1595-1608.
35
Maeng YS, Lee R, Lee B, et al. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells [J]. Sci Rep, 2016, 9(6): 20739.
36
Nie D, Peng Y, Li M, et al. Lithium chloride (LiCl) induced autophagy and downregulated expression of transforming growth factor β-induced protein (TGFBI) in granular corneal dystrophy [J]. Exp Eye Res, 2018, 173(8): 44-50.
37
聂丹瑶, 黎明, 叶琳, 等. 氯化锂通过TGFBI促进角膜基质成纤维细胞增殖和自噬 [J]. 国际眼科杂志, 2019, 19(11): 1840-1843.
38
Hatou S, Shimmura S. Review: corneal endothelial cell derivation methods from ES/iPS cells [J]. Inflamm Regen, 2019, 3(39): 19.
[1] 陈甜甜, 王晓东, 余海燕. 双胎妊娠合并Gitelman综合征孕妇的妊娠结局及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 559-568.
[2] 阚路兰, 田茂强, 唐一蜜. 以腹痛为首发症状的轻型Gitelman综合征患儿1例及文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 473-479.
[3] 慕佳霖, 冷雪霏, 田飞, 王丽娜, 陈志红. NSD1基因新发突变致Sotos综合征患儿1例临床分析并国内相关文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(06): 692-702.
[4] 罗序峰, 廖建湘, 罗智强, 段婧, 李永利, 徐建芳, 陈黎. Na+通道阻滞剂治疗SCN2A基因变异所致早发型癫痫性脑病并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 585-590.
[5] 杜牧, 陈晓波, 宋福英, 刘子勤, 钱坤. CYP27B1基因突变所致维生素D依赖性佝偻病ⅠA型患儿临床特征与基因分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 175-184.
[6] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[7] 刘妍, 吴涛, 毛东锋, 鱼玲玲, 白海. 人类白细胞抗原全相合异基因造血干细胞移植治疗多基因突变难治性急性髓系白血病一例[J]. 中华移植杂志(电子版), 2021, 15(04): 229-231.
[8] 杨晓健, 张炎, 冯嘉荣, 刘卓杰, 张浩. 先天性输精管缺如合并肾脏畸形三例CFTR基因突变检测并文献复习[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 110-113.
[9] 付皓丽, 张成, 梁舒婷, 苗泽群, 孟庆娱, 黄旅珍, 郭丽莉, 欧阳倩如, 许欣, 曹宇, 张晶议, 王乐今. FRMD7基因新突变位点导致先天性眼球震颤一家系的遗传学研究[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 152-157.
[10] 杨翠萍, 杨晓金, 全旭, 谢玲, 吴云林, 陈平. 肝细胞核因子-1α基因突变协同腺瘤样结肠息肉病基因突变对家族性腺瘤性息肉病细胞增殖的影响[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 228-231.
[11] 贺晶, 史洁, 林久銮, 孙朝晖, 王海祥, 张冰清, 刘一鸥, 宋宪成, 丰倩, 柏建军, 周文静. 结节性硬化伴难治性癫痫儿童的手术治疗分析[J]. 中华临床医师杂志(电子版), 2021, 15(08): 597-600.
[12] 王倩, 王永萍, 李新培, 杨成艳, 许慧, 孙凤娟, 刘亚平. 伴基因突变的低钾血症诊断学特征分析[J]. 中华诊断学电子杂志, 2023, 11(02): 115-119.
[13] 滕振, 闫波. 转录因子HAND1基因多态性在心血管疾病中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(01): 5-11.
[14] 时文霞, 郭勇鑫, 申俊杰, 陈文明, 郭文文, 赵同峰, 赵丹丹, 陈建, 孙忠亮, 孙道萍. RUNX1基因突变对成人急性髓系白血病患者临床特征、疗效及预后的影响[J]. 中华诊断学电子杂志, 2022, 10(03): 163-170.
[15] 黄慧, 王卫云, 成晨, 刘娅, 陈欣林. Meckel-Gruber综合征的产前诊断学特征及文献复习[J]. 中华诊断学电子杂志, 2022, 10(02): 77-82.
阅读次数
全文


摘要