1 |
Olson KC, Chen G, Xu Y, et al. Alloisoleucine differentiates the branched-chain aminoacidemia of Zucker and dietary obese rats [J]. Obesity, 2014, 22(5): 1212-1215.
|
2 |
White PJ, Newgard CB. Branched-chain amino acids in disease [J]. Science, 2019, 363(6427): 582-583.
|
3 |
Yang P, Hu W, Fu Z, et al. The positive association of branched-chain amino acids and metabolic dyslipidemia in Chinese Han population [J]. Lipids in Health & Disease, 2016, 15(1): 120.
|
4 |
Wen H, Luning S, Yingyun G, et al. Relationship between branched-chain amino acids, metabolic syndrome, and cardiovascular risk profile in a Chinese population: a cross-sectional study [J]. Int J Endocrinol, 2016, 2016: 8173905.
|
5 |
Biswas D, Duffley L, Pulinilkunnil T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis [J]. FASEB J, 2019, 33(8): 8711-8731.
|
6 |
Kettunen J, Tukiainen T, Sarin AP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels [J]. Nature Genetics, 2012, 44(3): 269-276.
|
7 |
Lotta LA, Scott RA, Sharp SJ, et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: a mendelian randomisation analysis [J]. Plos Medicine, 2016, 13(11): e1002179.
|
8 |
Chen K, Zhou YX, Li K, et al. A novel three-round multiplex PCR for SNP genotyping with next generation sequencing [J]. Anal Bioanal Chem, 2016, 408(16): 4371-4377.
|
9 |
Hu W, Hao H, Yu W, et al. Association of elevated glycosylated hemoglobin A1c with hyperfiltration in a middle-aged and elderly Chinese population with prediabetes or newly diagnosed diabetes: a cross-sectional study [J]. BMC Endocr Disord, 2015, 15: 47.
|
10 |
Wang FH, Liu J, Deng QJ, et al. Association between plasma essential amino acids and atherogenic lipid profile in a Chinese population: A cross-sectional study [J]. Atherosclerosis, 2019, 286: 7-13.
|
11 |
Le Couteur DG, Ribeiro R, Senior A, et al. Branched chain amino acids, cardiometabolic risk factors and outcomes in older men: the concord health and ageing in men project [J]. J Gerontol A Biol Sci Med Sci, 2020, 75(10): 1805-1810.
|
12 |
中国心血管病风险评估和管理指南编写联合委员会. 中国心血管病风险评估和管理指南 [J]. 中华预防医学杂志, 2019, 53(1): 13-35.
|
13 |
诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南 (2016年修订版) [J]. 中国循环杂志, 2016, 31(10): 937-953.
|
14 |
史会连, 田文君, 刘丽娜, 等. 非酒精性脂肪性肝病患者动脉粥样硬化性心血管疾病的影响因素研究 [J]. 实用心脑肺血管病杂志, 2019, 27(4): 25-28.
|
15 |
Taneera J , Lang S , Sharma A , et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets [J]. Cell Metab, 2012, 16(1):122-134.
|
16 |
Liping X, Yanan H, Tiange W, et al. Association of branched chain amino acids related variant rs1440581 with risk of incident diabetes and longitudinal changes in insulin resistance in Chinese [J]. Acta Diabetol, 2018, 55(9): 901-908.
|
17 |
Hu C, Jia W. Diabetes in China: epidemiology and genetic risk factors and their clinical utility in personalized medication [J]. Diabetes, 2018, 67(1): 3-11.
|
18 |
Goffredo M, Santoro N, Tricò D, et al. A branched-chain amino acid-related metabolic signature characterizes obese adolescents with non-alcoholic fatty liver disease [J]. Nutrients, 2017, 9(7): 642.
|
19 |
叶春, 房宇. 非酒精性脂肪肝大鼠血清氨基酸谱的改变及分析 [J]. 南京师大学报: 自然科学版, 2016, 39(1): 90-94.
|
20 |
林丽娟, 魏永越, 张汝阳, 等. 孟德尔随机化方法在观察性研究因果推断中的应用[J]. 中华预防医学杂志, 2019, 53(6): 619-624.
|