切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 265 -271. doi: 10.3877/cma.j.issn.1674-0785.2021.04.006

基础研究

骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用
张威1, 魏雅楠2,(), 韩娜1,()   
  1. 1. 100044 北京,北京大学人民医院中心实验室;100044 北京,国家创伤医学中心
    2. 100044 北京,北京大学人民医院老年科
  • 收稿日期:2021-03-16 出版日期:2021-04-15
  • 通信作者: 魏雅楠, 韩娜
  • 基金资助:
    国家自然科学基金资助项目(31671248); 北京大学人民医院研究与发展基金(RDY2019-16)

Bone marrow mesenchymal stem cell-derived exosomes promote peripheral nerve injury recovery

Wei Zhang1, Ya′nan Wei2,(), Na Han1,()   

  1. 1. Central Laboratory, Peking University People's Hospital, Beijing 100044, China; Department of Geriatrics, Peking University People's Hospital, Beijing 100044, China
    2. National Center for Trauma Medicine, Beijing 100044, China
  • Received:2021-03-16 Published:2021-04-15
  • Corresponding author: Ya′nan Wei, Na Han
引用本文:

张威, 魏雅楠, 韩娜. 骨髓间充质干细胞来源外泌体对促进大鼠坐骨神经钳夹伤的修复作用[J]. 中华临床医师杂志(电子版), 2021, 15(04): 265-271.

Wei Zhang, Ya′nan Wei, Na Han. Bone marrow mesenchymal stem cell-derived exosomes promote peripheral nerve injury recovery[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(04): 265-271.

目的

探讨骨髓间充质干细胞(BMSC)来源的外泌体对大鼠坐骨神经损伤的治疗效果。

方法

随机将24只SD大鼠平均分为3组。各组大鼠暴露出右侧坐骨神经后,在坐骨神经分叉处上方5 mm处用显微止血钳第二齿钳夹神经3次,每次10 s,中间间隔5 s。Exosome组在钳夹伤附近的神经外膜下注射5 μl外泌体,Control组在相同部位注射等量PBS,Sham组仅分离出神经,不进行其他操作。术后4周,运用Catwalk检测大鼠运动功能的恢复情况;运用电生理检测神经传导功能的恢复情况;马松染色检测各组手术侧的腓肠肌肌纤维面积;透射电镜观察神经纤维直径等超微结构变化;对坐骨神经损伤的相应脊髓节段进行免疫荧光染色,观察小胶质细胞和星形胶质细胞的活化数量。

结果

Catwalk示Exosome组大鼠坐骨神经功能指数优于Control组(P<0.05)。电生理示Exosome组大鼠的运动神经传导速度快于Control组(P<0.05),且复合肌肉动作电位的振幅高于Control组(P<0.05)。马松染色示Exosome组的腓肠肌肌纤维面积明显大于Control组(P<0.05)。透射电镜示Exosome组和Control组的有髓神经纤维直径小于Sham组(P<0.05),且Exosome组明显高于Control组(P<0.05),Exosome组的神经纤维排列也较Control整齐。免疫荧光示,Exosome组和Control组的腰段脊髓中的IBA-1和GFAP阳性区域面积百分比较Sham组明显上调(P<0.05),但Exosome组少于Control组(P<0.05)。

结论

坐骨神经损伤后,BMSC来源的外泌体促进了运动功能的恢复,其机制与促进轴突再生、缓解疼痛有关。

Objective

To investigate the role of bone marrow mesenchymal stem cell (BMSC)-derived exosomes in the repair process of sciatic nerve injury.

Methods

Twenty-four SD rats were randomly into three groups: control group, sham group, and exosome group. For inducing sciatic nerve injury, after exposing the sciatic nerve of each rat, the second level strength of microhemostatic forceps was used to clamp the nerve 5 mm above the sciatic nerve bifurcation for 3 times, 10 s for each time, with an interval of 5 s. In the exosome group, 5 μl of exosomes were injected into the subepineurium near the clamp injury. In the control group, 5 μl of PBS was injected in the same site. In the sham group, the nerve was just exposed without any other manipulation. At 4 weeks after surgery, Catwalk was used to detect the recovery of rat motor function. The function of nerve conduction was detected by electrophysiology. Masson staining was used to detect the area of gastrocnemius muscle fiber. The diameter of nerve fibers in each group was detected by transmission electron microscopy. Immunofluorescence staining for GFAP and IBA-1 was applied to demonstrate the positive area of microglia and astrocytes in the lumbar spinal cord segments.

Results

The results of Catwalk showed that the sciatic function index in the exosome group was significantly better than that of the control group (P<0.05). Electrophysiology showed that both the amplitude of compound muscle action potential and motor nerve conduction velocity were significantly higher than those of the control group (P<0.05). The area of gastrocnemius muscle fibers detected by Masson staining in the exosome group was significantly larger than that of the control group (P<0.05). Transmission electron microscopy showed that the cross area of the myelinated nerve fiber of the exosome group was bigger and in better shape than that of the control group (P<0.05), but smaller than that of the sham group (P<0.05). The percentages of positive GFAP area and IBA-1 area in the exosome group and control group were significantly larger than that of the sham group (P<0.05), and they were significantly smaller in the exosome group than in the control group (P<0.05).

Conclusion

After peripheral nerve injury, BMSC-derived exosomes can promote the functional recovery by promoting axon regeneration and pain relief.

图1 骨髓间充质干细胞的鉴定。图a为茜素红染色;图b为油红O染色;图c为阿尔辛蓝染色
图2 外泌体的鉴定。图a为骨髓间充质干细胞来源外泌体在透射电镜下的形态;图b为骨髓间充质干细胞来源外泌体的粒径分析
图3 各组大鼠Catwalk步态分析。图a为术后4周,各组大鼠钳夹伤侧(右后肢)及正常侧(左后肢)脚印;图b为术后4周,各组大鼠坐骨神经功能指数比较(n=5)
图4 各组大鼠电生理检测神经的传导功能情况(n=5)。图a为各组大鼠复合肌肉动作电位振幅比较;图b为各组大鼠运动神经传导速度比较
图5 各组大鼠腓肠肌横截面马松染色。图a~c分别为Exosome组(图a)、Control组(图b)、Sham组(图c)腓肠肌横截面马松染色;图d为各组腓肠肌肌纤维面积比较(n=5)
图6 各组大鼠透射电镜观察坐骨神经横截面情况。图a~c为Control组(图a)、Exosome组(图b)、Sham组(图c)坐骨神经横截面;图d为各组神经纤维的平均直径比较(n=5)
图7 各组大鼠损伤相应脊髓节段的胶质细胞活化情况。图a为免疫荧光显示各组GFAP(绿色)和IBA-1(红色)表达情况;图b~c为免疫荧光定量分析(n=5)
1
Lavorato A, Raimondo S, Boido M, et al. Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: systematic review [J]. Int J Mol Sci, 2021, 22(2): 572.
2
Silver S, Ledford CC, Vogel KJ, et al. Peripheral nerve entrapment and injury in the upper extremity [J]. Am Fam Physician, 2021, 103(5): 275-285.
3
Meyer RS, Abrams RA, Botte MJ, et al. Functional recovery following neurorrhaphy of the rat sciatic nerve by epineurial repair compared with tubulization [J]. J Orthop Res, 1997, 15(5): 664-669.
4
李德东, 孙健, 于明懂, 等. 间充质干细胞在周围神经损伤修复中的研究进展 [J]. 国际生物医学工程杂志, 2020, 43(5): 382-386.
5
Fang X, Deng J, Zhang W, et al. Conductive conduit small gap tubulization for peripheral nerve repair [J]. RSC Advances, 2020, 10(28): 16769-16775.
6
Xiao S, Zhang F, Zheng Y, et al. Synergistic effect of nanofat and mouse nerve-growth factor for promotion of sensory recovery in anterolateral thigh free flaps [J]. Stem Cells Transl Med, 2021, 10(2): 181-189.
7
Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy [J]. Stem Cell Res Ther, 2016, 7: 37.
8
Jiang L, Jones S, Jia X. Stem cell transplantation for peripheral nerve regeneration: current options and opportunities [J]. Int J Mol Sci, 2017, 18(1): 94.
9
Bröckelmann PJ, Müller H, Casasnovas O, et al. Risk factors and a prognostic score for survival after autologous stem-cell transplantation for relapsed or refractory Hodgkin lymphoma [J]. Ann Oncol, 2017, 28(6): 1352-1358.
10
El Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities [J]. Nat Rev Drug Discov, 2013, 12(5): 347-357.
11
Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction [J]. Circ Res, 2015, 117(1): 52-64.
12
徐丽娟, 张云巍, 王淑芳, 等. 小鼠骨髓间充质干细胞的分离、培养新方法 [J]. 肝脏, 2017, 22(3): 252-255.
13
Chen J, Ren S, Duscher D, et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function [J]. J Cell Physiol, 2019, 234(12): 23097-23110.
14
Zhang Q, Nguyen P, Xu Q, et al. Neural progenitor-like cells induced from human gingiva-derived mesenchymal stem cells regulate myelination of schwann cells in rat sciatic nerve regeneration [J]. Stem Cells Transl Med, 2017, 6(2): 458-470.
15
Adameyko I, Ernfors P. Nerves do it again: donation of mesenchymal cells for tissue regeneration [J]. Cell Stem Cell, 2019, 24(2): 195-197.
16
Zhang B, Yan W, Zhu Y, et al. Nanomaterials in neural-stem-cell-mediated regenerative medicine: imaging and treatment of neurological diseases [J]. Adv Mater, 2018, 30(17): e1705694.
17
Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy [J]. Annu Rev Physiol, 2015, 77: 13-27.
18
王琳, 裴双, 郭斌, 等. 骨髓间充质干细胞来源的外泌体用于大鼠脊髓损伤修复的初步探索 [J]. 中国病理生理杂志, 2018, 34(5): 862-869.
19
Chen G, Zhang YQ, Qadri YJ, et al. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain [J]. Neuron, 2018, 100(6): 1292-1311.
20
刘念, 臧凯凯, 张玉秋. 外周神经损伤小鼠不同脊髓节段小胶质细胞和星形胶质细胞的激活状态 [J]. 生理学报, 2015, 67(6): 571-582.
[1] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[2] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[3] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[4] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[5] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[6] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[7] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[8] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[9] 郑晴晴, 王剑, 阳韬. 外泌体miRNA对肺结节的诊断进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 293-295.
[10] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[11] 雷双银, 习剑鑫, 贺羽轩, 姚静宜, 石博雅, 马杰, 池光范, 李美英. 间充质干细胞源外泌体在神经退行性疾病治疗中的应用与进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 93-100.
[12] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[13] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 高雷, 李全, 巴雅力嘎, 陈强, 侯智慧, 曹胜军, 巴特. 重度烧伤患者血小板外泌体对凝血功能调节作用的初步研究[J]. 中华卫生应急电子杂志, 2023, 09(03): 149-154.
阅读次数
全文


摘要