切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 308 -312. doi: 10.3877/cma.j.issn.1674-0785.2021.04.013

综述

经颅磁刺激在阿尔茨海默病诊断及治疗中的研究进展
李嘉辰1, 刘献增1,()   
  1. 1. 102206 北京,北京大学国际医院神经内科
  • 收稿日期:2021-02-07 出版日期:2021-04-15
  • 通信作者: 刘献增

Progress in research of transcranial magnetic stimulation for diagnosis and treatment of Alzheimer's disease

Jiachen Li1, Xianzeng Liu1,()   

  1. 1. Department of Neurology, Peking University International Hospital, Beijing 102206, China
  • Received:2021-02-07 Published:2021-04-15
  • Corresponding author: Xianzeng Liu
引用本文:

李嘉辰, 刘献增. 经颅磁刺激在阿尔茨海默病诊断及治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(04): 308-312.

Jiachen Li, Xianzeng Liu. Progress in research of transcranial magnetic stimulation for diagnosis and treatment of Alzheimer's disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(04): 308-312.

阿尔茨海默病(AD)是导致痴呆的最常见病因之一,随着AD的患病率逐年上升,为社会带来了沉重的负担。目前针对AD仅以药物为主要治疗手段,但效果有限。根据目前的AD研究框架,更多被提及的是针对淀粉样蛋白沉积、病理性tau及神经元变性的研究,这些研究方法具有昂贵、有创等不利因素,亟需开发更新颖且有效的AD诊断和治疗方法。经颅磁刺激(TMS)可以反映运动皮层兴奋性,揭示疾病的神经电生理变化,已经被越来越多地应用于AD相关诊断及治疗的研究中。已有研究结果表明TMS可以在疾病早期发现AD患者皮层的神经生理变化,与目前广泛应用的生物标志物相比较,前者对AD诊断及鉴别有着不可忽视的价值,又因其具有无创、便捷及费用较低等优点,有望在未来作为AD甚至其他神经变性病诊断的生物标志物。另外,已有研究将TMS应用于AD的治疗,并取得了一定的临床效果。本综述基于目前TMS的研究进展,对未来TMS在AD研究和治疗方面的价值进行分析。

Alzheimer's disease (AD) is the most common cause of dementia, and its morbidity increases rapidly, bringing a heavy burden to society. At present, drug therapy is the main treatment but unfortunately, with limited effect. According to the current AD research, amyloid deposition, pathologic tau, and neurodegeneration are most often studied for the diagnosis and treatment of AD, however, they have the disadvantages of high cost and invasion. Therefore, there is a urgent demand for novel and valid techniques for the diagnosis and treatment of AD. Transcranial magnetic stimulation (TMS) can reveal the excitability of the motor cortex, reflect the alternative pathophysiology of diseases, and is being increasingly applied for AD diagnosis and treatment. Previous studies have shown that TMS can detect the neurophysiological changes in the cortex of AD patients at the prodromal stage of the disease, and compared to the well-established biomarkers, TMS has the value of diagnosis and differential diagnosis. Because of it is non-invasive, convenient, and inexpensive, TMS has the potential to become a biomarker of AD and other degenerative disease. In addition, TMS has been used in the treatment for AD and achieved promising clinical effects. This review focus on the advances in the studies of TMS, to analyze the application of TMS in the study and treatment of AD.

1
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J]. Alzheimers Dement, 2011, 7(3): 280-292.
2
Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J]. Alzheimers Dement, 2011, 7(3): 270-279.
3
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J]. Alzheimers Dement, 2011, 7(3): 263-269.
4
Li F, Otani J. Financing elderly people's long-term care needs: Evidence from China [J]. Int J Health Plann Manage, 2018, 33(2): 479-488.
5
McDade E, Bateman RJ. Stop Alzheimer's before it starts [J]. Nature, 2017, 547(7662): 153-155.
6
Association Alzheimer's. 2019 Alzheimer's disease facts and figures [J]. Alzheimer's Dement, 2019, 15(3): 321-387.
7
Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease [J]. Alzheimers Dement, 2018, 14(4): 535-562.
8
Barker AT, Jalinous R, Freeston IL, et al. Non-invasive magnetic stimulation of human motor cortex [J]. Lancet, 1985, 1(8437): 1106-1107.
9
Kujirai T, Caramia MD, Rothwell JC, et al. Corticocortical inhibition in human motor cortex [J]. J Physiol, 1993, 471: 501-519.
10
Fisher RJ, Nakamura Y, Bestmann S, et al. Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking [J]. Exp Brain Res, 2002, 143(2): 240-248.
11
Ziemann U. TMS and drugs [J]. Clin Neurophysiol, 2004, 115(8): 1717-1729.
12
Di Lazzaro V, Pilato F, Dileone M, et al. Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study [J]. Clin Neurophysiol, 2007, 118(10): 2207-2214.
13
Vucic S, Kiernan MC. Transcranial magnetic stimulation for the assessment of neurodegenerative disease [J]. Neurotherapeutics, 2017, 14(1): 91-106.
14
Geevasinga N, Menon P, Ozdinler PH, et al. Pathophysiological and diagnostic implications of cortical dysfunction in ALS [J]. Nat Rev Neurol, 2016, 12(11): 651-661.
15
Benussi A, Dell'Era V, Cantoni V, et al. Discrimination of atypical parkinsonisms with transcranial magnetic stimulation [J]. Brain Stimul, 2018, 11(2): 366-373.
16
Barker AT, Shields K. Transcranial magnetic stimulation: basic principles and clinical applications in migraine [J]. Headache, 2017, 57(3): 517-524.
17
Udupa K, Bahl N, Ni Z, et al. Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson's disease [J]. J Neurosci, 2016, 36(2): 396-404.
18
Iglesias AH. Transcranial magnetic stimulation as treatment in multiple neurologic conditions [J]. Curr Neurol Neurosci Rep, 2020, 20(1): 1.
19
Elder GJ, Taylor JP. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? [J]. Alzheimers Res Ther, 2014, 6(9): 74.
20
Hoeppner J, Wegrzyn M, Thome J, et al. Intra- and inter-cortical motor excitability in Alzheimer's disease [J]. J Neural Transm (Vienna), 2012, 119(5): 605-612.
21
Liepert J, Bar KJ, Meske U, et al. Motor cortex disinhibition in Alzheimer's disease [J]. Clin Neurophysiol, 2001, 112(8): 1436-1441.
22
Bagattini C, Mutanen TP, Fracassi C, et al. Predicting Alzheimer's disease severity by means of TMS-EEG coregistration [J]. Neurobiol Aging, 2019, 80: 38-45.
23
Bortoletto M, Veniero D, Thut G, et al. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome [J]. Neurosci Biobehav Rev, 2015, 49: 114-124.
24
Fried PJ, Jannati A, Davila-Perez P, et al. Reproducibility of single-pulse, paired-pulse, and intermittent theta-burst tms measures in healthy aging, type-2 diabetes, and Alzheimer's disease [J]. Front Aging Neurosci, 2017, 9: 263.
25
McMackin R, Bede P, Pender N, et al. Neurophysiological markers of network dysfunction in neurodegenerative diseases [J]. Neuroimage Clin, 2019, 22: 101706.
26
Perretti A, Grossi D, Fragassi N, et al. Evaluation of the motor cortex by magnetic stimulation in patients with Alzheimer disease [J]. J Neurol Sci, 1996, 135(1): 31-37.
27
Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria [J]. Lancet Neurol, 2014, 13(6): 614-629.
28
Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer's disease [J]. Brain, 2018, 141(7): 1917-1933.
29
Benussi A, Di Lorenzo F, Dell'Era V, et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from frontotemporal dementia [J]. Neurology, 2017, 89(7): 665-672.
30
Benussi A, Alberici A, Ferrari C, et al. The impact of transcranial magnetic stimulation on diagnostic confidence in patients with Alzheimer disease [J]. Alzheimers Res Ther, 2018, 10(1): 94.
31
Benussi A, Grassi M, Palluzzi F, et al. Classification accuracy of transcranial magnetic stimulation for the diagnosis of neurodegenerative dementias [J]. Ann Neurol, 2020, 87(3): 394-404.
32
Petersen RC, Lopez O, Armstrong MJ, et al. Practice guideline update summary: mild cognitive impairment: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology [J]. Neurology, 2018, 90(3): 126-135.
33
Padovani A, Benussi A, Cotelli MS, et al. Transcranial magnetic stimulation and amyloid markers in mild cognitive impairment: impact on diagnostic confidence and diagnostic accuracy [J]. Alzheimers Res Ther, 2019, 11(1): 95.
34
Padovani A, Benussi A, Cantoni V, et al. Diagnosis of mild cognitive impairment due to Alzheimer's disease with transcranial magnetic stimulation [J]. J Alzheimers Dis, 2018, 65(1): 221-230.
35
Chang CH, Lane HY, Lin CH. Brain stimulation in Alzheimer's disease [J]. Front Psychiatry, 2018, 9: 201.
36
Drumond Marra HL, Myczkowski ML, Maia Memoria C, et al. Transcranial magnetic stimulation to address mild cognitive impairment in the elderly: a randomized controlled study [J]. Behav Neurol, 2015, 2015: 287843.
37
Alcalá-Lozano R, Morelos-Santana E, Cortés-Sotres JF, et al. Similar clinical improvement and maintenance after rTMS at 5 Hz using a simple vs. complex protocol in Alzheimer's disease [J]. Brain Stimul, 2018, 11(3): 625-627.
38
Hsu WY, Ku Y, Zanto TP, et al. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis [J]. Neurobiol Aging, 2015, 36(8): 2348-2359.
39
Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI [J]. Proc Natl Acad Sci U S A, 2004, 101(13): 4637-4642.
40
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease [J]. Ann N Y Acad Sci, 2008, 1124: 1-38.
41
Koch G, Bonni S, Pellicciari MC, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease [J]. Neuroimage, 2018, 169: 302-311.
42
Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease [J]. Alzheimers Dement, 2020, 16(4): 641-650.
43
Chou YH, Ton That V, Sundman M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease [J]. Neurobiol Aging, 2019, 86: 1-10.
44
Wang X, Mao Z, Ling Z, et al. Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer's disease: a meta-analysis of randomized controlled trials [J]. J Neurol, 2019, 267(3): 791-801.
45
Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease [J]. Alzheimers Dement, 2014, 10(6): 844-852.
46
Lin Y, Jiang WJ, Shan PY, et al. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with Alzheimer's disease: a systematic review and meta-analysis [J]. J Neurol Sci, 2019, 398: 184-191.
[1] 黄志毅, 赵娟. 重复经颅磁刺激联合分级运动想象训练对脑梗死后偏瘫患者运动功能及神经功能的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 102-107.
[2] 程俊凯, 罗耀文, 李娟, 张磊, 杨淑涵, 王彦刚. 重复经颅磁刺激上调DJ-1表达改善小鼠创伤性脑损伤后功能障碍的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 261-268.
[3] 郭翃江, 符雪彩, 朱妍妍, 严之红, 王丽娜, 纪红. 基于影响因素的老年阿尔茨海默病认知功能障碍预测模型构建及电子化认知康复训练的应用价值[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 156-161.
[4] 潘升超, 陈燕, 余程冬, 曹晓光. 重复经颅磁刺激技术在颅脑外伤康复中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 118-123.
[5] 邓艳媚, 龙耀斌, 李鑫, 莫丽华. 经颅磁刺激结合前庭康复训练对ADHD患儿注意力缺陷的影响及临床机制[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 34-38.
[6] 张建萍, 邓海鹏, 焦黛妍, 赵洁. 高频重复经颅磁刺激联合肌电生物反馈治疗脑卒中后吞咽障碍的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 285-290.
[7] 江伟, 袁良津, 唐向阳, 张斗凤, 王少敏. 高频重复经颅磁刺激规律间歇治疗丘脑梗死后中枢性疼痛的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 269-273.
[8] 潘惠, 王明, 杨忠, 杜向东. 低频重复经颅磁刺激辅助治疗伴不同特征抑郁症的对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 562-568.
[9] 黄爱茹, 付婧, 余茜. 多模块3D虚拟现实技术联合重复经颅磁刺激治疗卒中后认知功能障碍的效果[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1089-1095.
[10] 杨轩, 石晴, 邱海斌, 黄强. 重复经颅磁刺激联合艾司唑仑对脑卒中失眠患者的疗效及其对血清细胞因子和神经递质的影响[J]. 中华临床医师杂志(电子版), 2022, 16(05): 395-399.
[11] 陈芸, 张乔阳, 张敏, 曹音, 董贯忠, 恽文伟, 杨海燕, 张伟媛. 高频重复经颅磁刺激联合认知行为治疗对脑卒中后焦虑和抑郁共病状态患者的影响[J]. 中华卫生应急电子杂志, 2022, 08(04): 205-210.
[12] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
[13] 祁研, 张岩, 陈雪, 刘颖, 史楠. 探讨高低频交互rTMS对老年脑卒中偏瘫患者肢体功能、吞咽功能及日常生活活动能力的影响[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 359-363.
[14] 夏禹, 刘寒, 朱瑞. 阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 290-293.
[15] 宋蕾, 吴寒, 侯双兴, 楼菁菁, 刘兴党. 关于阿尔茨海默病中视网膜和视神经及相关物质的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 351-355.
阅读次数
全文


摘要