切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 370 -374. doi: 10.3877/cma.j.issn.1674-0785.2021.05.011

基础研究

心脏神经结丛消融联合低强度耳屏迷走神经刺激对犬房颤电生理特性的影响
杨志1, 张峰2, 雷芾华2, 程文波3, 侯月梅3,()   
  1. 1. 831199 新疆昌吉,新疆医科大学第一附属医院昌吉分院心血管内科
    2. 201508 上海,复旦大学附属金山医院心内科
    3. 201400 上海,上海交通大学附属第六人民医院南院老年科
  • 收稿日期:2021-01-09 出版日期:2021-05-15
  • 通信作者: 侯月梅
  • 基金资助:
    国家自然科学基金(81670308); 上海市科委创新行动计划(20Y11909900)

Effects of cardiac plexus ablation combined with low intensity tragus vagus nerve stimulation on electrophysiological characteristics of atrial fibrillation in dogs

Zhi Yang1, Feng Zhang2, Fuhua Lei2, Wenbo Chen3, Yuemei Hou3,()   

  1. 1. Department of Cardiology, Changji Branch of the First Affiliated Hospital of Xinjiang Medical University, Changji 831199, China
    2. Department of Cardiology,Jinshan Hospital of Fudan University, Shanghai 201508, China
    3. Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Camplus, Shanghai 201400, China
  • Received:2021-01-09 Published:2021-05-15
  • Corresponding author: Yuemei Hou
引用本文:

杨志, 张峰, 雷芾华, 程文波, 侯月梅. 心脏神经结丛消融联合低强度耳屏迷走神经刺激对犬房颤电生理特性的影响[J]. 中华临床医师杂志(电子版), 2021, 15(05): 370-374.

Zhi Yang, Feng Zhang, Fuhua Lei, Wenbo Chen, Yuemei Hou. Effects of cardiac plexus ablation combined with low intensity tragus vagus nerve stimulation on electrophysiological characteristics of atrial fibrillation in dogs[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(05): 370-374.

目的

研究心脏神经节丛消融联合低强度耳屏迷走神经刺激对阵发性犬心房颤动(简称房颤)电生理特性的影响,探讨低强度耳屏迷走神经刺激对房颤消融术后的治疗价值。

方法

21条健康成年比格犬随机分为3组:RAP组(500次/min快速心房起搏,n=7)、ABL组(心脏神经节消融+500次/min快速心房起搏,n=7)、LL-ST组(心脏神经节消融+低强度右侧耳屏刺激+500次/min快速心房起搏,n=7)。其中,RAP组为单纯快速心房起搏,ABL组为右上神经节丛(ARGP)和左上神经节丛(LSGP)消融后快速心房起搏,LL-ST组为ARGP+LSGP消融后低强度刺激右侧耳屏迷走神经+快速心房起搏。于起搏前及起搏后2、4、6、8、10、12、14、16 h测定犬心房和肺静脉不同部位的房颤诱发率、房颤持续时间、有效不应期(ERP)及有效不应期离散度(dERP)。

结果

(1)与RAP组相比,LL-ST组房颤诱发率显著降低,房颤持续时间显著减少,ERP显著延长,dERP显著降低,差异有统计学意义(P均<0.05)。(2)与ABL组相比,LL-ST组房颤诱发率显著降低,房颤持续时间显著减少,ERP显著延长,dERP显著降低,差异均有统计学意义(P<0.05)。

结论

低强度右侧耳屏迷走神经刺激联合心脏神经节丛消融可以有效控制房颤消融术后的复发。

Objective

To study the effect of cardiac ganglion plexus ablation combined with low intensity tragus vagus nerve stimulation on electrophysiological characteristics in a dog model of atrial fibrillation, and to explore the value of tragus vagus nerve stimulation in preventing the recurrence of atrial fibrillation after ablation.

Methods

Twenty-one adult beagle dogs were randomly divided into three groups: RAP group (n=7; 500 times/min rapid atrial pacing), ABL group [n=7; ablation of the right superior ganglion plexus (ARGP) and left superior ganglion plexus (LSGP) + 500 times/min rapid atrial pacing], and LL-ST group (n=7; ARGP and LSGP ablation + low intensity right ear vagus nerve stimulation + 500 times/min rapid atrial pacing). At baseline and 2, 4, 6, 8, 10, 12, 14, and 16 h after pace-making, the inducibility and duration of atrial fibrillation, effective refractory period (ERP), and dispersion effective refractory period(dERP) in different locations of the atrium and pulmonary veins were detected.

Results

(1) Compared with RAP group, the inducibility and duration of atrial fibrillation were significantly reduced in the LL-ST group (P<0.05); the ERP was significantly prolonged and the dERP was significantly decreased (P<0.05). (2) Compared with ABL group, the inducibility and duration of atrial fibrillation were significantly reduced in the LL-ST group (P<0.05); the ERP was significantly prolonged and the dERP was significantly decreased (P<0.05).

Conclusion

Low intensity right tragus stimulation combined with cardiac ganglion plexus ablation can effectively control the recurrence of atrial fibrillation after ablation.

图1 各组不同刺激时间对LA、LIPV、LSPV部位AF诱发率的影响(n=7)。图a为各组LA在不同刺激时间的AF诱发率;图b为各组LIPV在不同刺激时间的AF诱发率;图c为各组LSPV在不同刺激时间的AF诱发率
图2 各组不同刺激时间对LA、LIPV、LSPV部位AF持续时间的影响(n=7)。图a为各组LA在不同刺激时间的AF持续时间;图b为各组LIPV在不同刺激时间的AF持续时间;图c为各组LSPV在不同刺激时间的AF持续时间
图3 各组不同刺激时间对LA、LIPV、LSPV部位ERP及dERP的影响(n=7)。图a为各组LA在不同刺激时间的ERP;图b为各组LSPV在不同刺激时间的ERP;图c为各组LIPV在不同刺激时间的ERP;图d为各组在不同刺激时间的dERP
1
Hirose M, Leatmanoratn Z, Laurita KR, et al. Partial vagal denervation increases vulnerability to vagally induced atrial fibrillation [J]. J Cardiovasc Electrophysiol, 2002, 13(12): 1272-1279.
2
Lo LW, Scherlag BJ, Chang HY, et al. Paradoxical long term proarrhythmic effects after ablating the "head station" ganglionated plexi of the vagal in nervation to the heart [J]. Heart Rhythm, 2013, 10(5): 751-757.
3
Yu LL, Scherlag BJ, Sunny SP. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: A noninvasive approach to treat the initial phase of atrial fibrillation [J]. Heart Rhythm, 2013, 10(3): 428-435.
4
Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patiens with atrial fibrillation [J]. J Cardiovasc Electrophysiol, 2009, 20(10): 1186-1189.
5
Pokushalov E. The role of autonomic denervation during catheter ablation of atrial fibrillation [J]. Curr Opin Cardiol, 2008, 23(1): 55-59.
6
Yoshida N, Yamada T, Murakami Y, et al. Vagal modification can also help prevent late recurrence of atrial fibrillation after segmental pulmonary vein isolation [J]. Circ J, 2009, 73(4): 632-638.
7
Scanavacca M, Pisani C, Hachul D, et al. Selective atrial vagal denervation guided by evoked vagal reflex to treatpatients with paroxysmal atrial fibrillation [J]. Circulation, 2006, 114(9): 876 -885.
8
Armour JA, Murphy DA, Yuan BX, et al. Gross and microscopic anatomy of the human intrinsic cardiac nervous system [J]. Anat Rec, 1997, 247(2): 289-298.
9
Zhou Q, Zhang L, Wang K, et al. Effect of interconnection between cervical vagus trunk, epicardial fat pad on sinus node function, and atrial fibrillation [J]. Pacing Clin Electrophysiol, 2014, 37(3): 356-363.
10
Vaitkevicius R, Saburkina I, Rysevaite K. Nerve supply of the human pulmonary veins: an anatomical study [J]. Heart Rhythm, 2009, 6(2): 221-228.
11
Chen J, Wasmund S, Hamdan M, et al. Back to the future: the role of the autonomic nervous system in atrial fibrillation [J]. PACE, 2006, 29(4): 413-421.
12
Zhou J, Scherlag BJ, Edwards J, et al. Gradients of atrial refractoriness and indueibility of atrial fibrillation due to stimulation of ganglionated plexi [J]. J Cardiovase Electrophysiol, 2007, 18(1): 83-90.
13
Tan AY, Li H, Wachsmann-Hogiu S, et al. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonaryvein junction [J]. J Am Coll Cardiol, 2006, 48(4): 132-143.
14
Sha Y, Scherlag BJ, Yu L, et al. Low-level right vagal stimulation: anticholinergic and antiadrenergic effects [J]. J Cardiovasc Electrophysiol, 2011, 22(10): 1147-1153.
15
Shen MJ, Shinohara T, Park HW, et al. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines [J]. Circulation, 2011,123(20): 2204-2212.
16
Gallo MP, Levi R, Ramella R, et al. Endothelium-derived nitric oxide mediates the anti-adrenergic effect of human vasostatin-1 in rat ventricular myocardium [J]. Am J Physiol Heart Circ Physiol, 2007, 292(10): 2906-2912.
17
Ilebekk A, Bjorkman JA, Nordlander M. Influence of endogenous neuropeptide Y (NPY) on the sympathetic-parasympathetic interaetion in the canine heart [J]. J Cardiovasc Pharmacol, 2005, 46(4): 474-480.
18
Stavrakis S, Scherlag BJ, Fan Y, et al. Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway [J]. J Interv Card Electrophysiol, 2013, 36(3): 199-208.
[1] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[2] 涂鹏, 张晓航, 董虹美, 陈功立, 冉素真. 超声多普勒评估在双胎输血综合征射频消融减胎术后的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 492-497.
[3] 王兴, 张峰伟. 腹腔镜肝切除联合断面射频消融治疗伴微血管侵犯肝细胞癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 580-583.
[4] 周文斌, 王水. 能量消融技术在乳腺良性疾病应用现状和展望[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 237-239.
[5] 宋铭杰, 韩青雷, 李佳隆, 邵英梅. 内镜下晚期肝外胆管恶性肿瘤消融治疗研究现况[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 340-342.
[6] 任茂玲, 孙晓容, 何晓丽. CT引导下微波消融术在肺部结节治疗中的应用及术后并发症的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 718-720.
[7] 蒙姣姣, 胡刚, 欧阳涣堃. 肺癌术前淋巴结转移及MWA手术效果预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 547-549.
[8] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
[9] 孟泓宇, 卢逸, 曹彦龙, 戴操, 杨佳伟, 林楠, 徐见亮. 基于PSM比较TACE联合射频消融与单纯射频消融治疗小肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 417-421.
[10] 许语阳, 吕云福, 王葆春. 乙肝后肝硬化门静脉高压症脾肿大外科治疗进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 469-473.
[11] 王利, 张磊, 费晓炜, 伊西才, 王彦刚. 迷走神经电刺激术中充分剥离迷走神经鞘膜对术后癫痫发作影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 160-164.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王震, 杨晓月, 苏康康, 王朝阳, 李少杰, 陈淑霞, 谷剑. β受体阻滞剂对心力衰竭合并房颤患者预后影响的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 479-482.
[14] 毛媛媛, 殷曰帅, 宓兵, 胡效坤. CT引导下经皮穿刺肺腺癌微波消融后致巨大空洞一例[J]. 中华介入放射学电子杂志, 2023, 11(03): 287-288.
[15] 邱令智, 胡萍, 罗婷, 鄢华. 脂蛋白(a)与心房颤动关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 280-284.
阅读次数
全文


摘要