1 |
Hirose M, Leatmanoratn Z, Laurita KR, et al. Partial vagal denervation increases vulnerability to vagally induced atrial fibrillation [J]. J Cardiovasc Electrophysiol, 2002, 13(12): 1272-1279.
|
2 |
Lo LW, Scherlag BJ, Chang HY, et al. Paradoxical long term proarrhythmic effects after ablating the "head station" ganglionated plexi of the vagal in nervation to the heart [J]. Heart Rhythm, 2013, 10(5): 751-757.
|
3 |
Yu LL, Scherlag BJ, Sunny SP. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: A noninvasive approach to treat the initial phase of atrial fibrillation [J]. Heart Rhythm, 2013, 10(3): 428-435.
|
4 |
Po SS, Nakagawa H, Jackman WM. Localization of left atrial ganglionated plexi in patiens with atrial fibrillation [J]. J Cardiovasc Electrophysiol, 2009, 20(10): 1186-1189.
|
5 |
Pokushalov E. The role of autonomic denervation during catheter ablation of atrial fibrillation [J]. Curr Opin Cardiol, 2008, 23(1): 55-59.
|
6 |
Yoshida N, Yamada T, Murakami Y, et al. Vagal modification can also help prevent late recurrence of atrial fibrillation after segmental pulmonary vein isolation [J]. Circ J, 2009, 73(4): 632-638.
|
7 |
Scanavacca M, Pisani C, Hachul D, et al. Selective atrial vagal denervation guided by evoked vagal reflex to treatpatients with paroxysmal atrial fibrillation [J]. Circulation, 2006, 114(9): 876 -885.
|
8 |
Armour JA, Murphy DA, Yuan BX, et al. Gross and microscopic anatomy of the human intrinsic cardiac nervous system [J]. Anat Rec, 1997, 247(2): 289-298.
|
9 |
Zhou Q, Zhang L, Wang K, et al. Effect of interconnection between cervical vagus trunk, epicardial fat pad on sinus node function, and atrial fibrillation [J]. Pacing Clin Electrophysiol, 2014, 37(3): 356-363.
|
10 |
Vaitkevicius R, Saburkina I, Rysevaite K. Nerve supply of the human pulmonary veins: an anatomical study [J]. Heart Rhythm, 2009, 6(2): 221-228.
|
11 |
Chen J, Wasmund S, Hamdan M, et al. Back to the future: the role of the autonomic nervous system in atrial fibrillation [J]. PACE, 2006, 29(4): 413-421.
|
12 |
Zhou J, Scherlag BJ, Edwards J, et al. Gradients of atrial refractoriness and indueibility of atrial fibrillation due to stimulation of ganglionated plexi [J]. J Cardiovase Electrophysiol, 2007, 18(1): 83-90.
|
13 |
Tan AY, Li H, Wachsmann-Hogiu S, et al. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonaryvein junction [J]. J Am Coll Cardiol, 2006, 48(4): 132-143.
|
14 |
Sha Y, Scherlag BJ, Yu L, et al. Low-level right vagal stimulation: anticholinergic and antiadrenergic effects [J]. J Cardiovasc Electrophysiol, 2011, 22(10): 1147-1153.
|
15 |
Shen MJ, Shinohara T, Park HW, et al. Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines [J]. Circulation, 2011,123(20): 2204-2212.
|
16 |
Gallo MP, Levi R, Ramella R, et al. Endothelium-derived nitric oxide mediates the anti-adrenergic effect of human vasostatin-1 in rat ventricular myocardium [J]. Am J Physiol Heart Circ Physiol, 2007, 292(10): 2906-2912.
|
17 |
Ilebekk A, Bjorkman JA, Nordlander M. Influence of endogenous neuropeptide Y (NPY) on the sympathetic-parasympathetic interaetion in the canine heart [J]. J Cardiovasc Pharmacol, 2005, 46(4): 474-480.
|
18 |
Stavrakis S, Scherlag BJ, Fan Y, et al. Inhibition of atrial fibrillation by low-level vagus nerve stimulation: the role of the nitric oxide signaling pathway [J]. J Interv Card Electrophysiol, 2013, 36(3): 199-208.
|