切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (07) : 547 -551. doi: 10.3877/cma.j.issn.1674-0785.2021.07.013

综述

碳纳米管/壳聚糖复合材料在医学领域应用的研究进展
吴宏珊1, 薛智钧1, 索来2, 申静2,()   
  1. 1. 300071 天津,南开大学
    2. 300041 天津,天津市口腔医院国际诊疗中心
  • 收稿日期:2020-11-07 出版日期:2021-07-15
  • 通信作者: 申静
  • 基金资助:
    天津市口腔医院科研基金(青年项目)(2019BSQN02)

Progress in application of carbon nanotube/chitosan composite materials in medical field

Hongshan Wu1, Zhijun Xue1, Lai Suo2, Jing Shen2,()   

  1. 1. Nankai University, Tianjin 300071, China
    2. Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, Tianjin 300041, China
  • Received:2020-11-07 Published:2021-07-15
  • Corresponding author: Jing Shen
引用本文:

吴宏珊, 薛智钧, 索来, 申静. 碳纳米管/壳聚糖复合材料在医学领域应用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(07): 547-551.

Hongshan Wu, Zhijun Xue, Lai Suo, Jing Shen. Progress in application of carbon nanotube/chitosan composite materials in medical field[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(07): 547-551.

近年来,随着材料学的发展,一些纳米材料因其具有良好的理化性质,在各领域的应用中体现出巨大优势。其中,碳纳米管(CNT)是碳的同素异形体,为较常见的碳基纳米材料之一,具有良好的理化及生物学性能,因而受到众多研究者的关注。壳聚糖(CHI)是甲壳素脱乙酰基后的天然生物聚合物,无毒,含有大量的羟基、氨基官能团,在水中很难溶解,但可在酸性溶液中溶解并且能够改善CNT在水溶液中的分散性和生物相容性。因此,许多学者尝试将CNT和CHI结合,制成CNT/CHI复合物,其灵敏度高、稳定性好、制作简单且成本低,是一种新型的生物复合材料,可用于生物医学领域。本文就CNT/CHI复合材料的机械性能、抗菌活性、免疫活性、组织愈合等生物医学方面性能的研究进展做一综述。

In recent years, with the development of materials science, some nanomaterials have shown great advantages in various applications due to their good physical and chemical properties. Among them, carbon nanotube (CNT) is an allotrope of carbon. It is one of the more common carbon-based nanomaterials. Since CNT has good physical, chemical, and biological properties, it has attracted the attention of many researchers. Chitosan (CHI) is a natural biopolymer after the deacetylation of chitin. It is non-toxic and contains a large number of hydroxyl and amino functional groups. CHI is difficult to dissolve in water, but it can be dissolved in acidic solutions and can improve the CNT in aqueous solution, as well as dispersibility and biocompatibility in the medium. Therefore, many scholars have tried to combine CNT and CHI to make a CNT/CHI composite, which has high sensitivity, good stability, simple production, and low cost. As a new type of biocomposite material, CNT/CHI composite can be used in the biomedical field. This article summarizes the recent research progress of CNT/CHI composites with regard to its biomedical properties such as mechanical properties, antibacterial activity, immune activity, and role in tissue healing.

1
Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview [J]. Molecules, 2020, 25(11): 2699.
2
Yaqoob AA, Ahmad H, Parveen T, et al. Recent advances in metal decorated nanomaterials and their various biological applications: a review [J]. Front Chem, 2020, 8: 341.
3
Wang SF, Shen L, Zhang WD, et al. Preparation and mechanical properties of chitosan/carbon nanotubes composites [J]. Biomacromolecules, 2005, 6(6): 3067-3072.
4
Morin-Crini N, Lichtfouse E, Torri G, et al. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry [J]. Environ Chem Lett, 2019, 17(4): 1667-1692.
5
Fraczek A, Menaszek E, Paluszkiewicz C, et al. Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes [J]. Acta Biomater, 2008, 4(6): 1593-1602.
6
Najeeb CK, Chang J, Lee JH, et al. Preparation of semiconductor-enriched single-walled carbon nanotube dispersion using a neutral ph water soluble chitosan derivative [J]. J Colloid Interface Sci, 2011, 354(2): 461-466.
7
Singh RP, Sharma G, Sonali , et al. Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery [J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 446-458.
8
Nivethaa EK, Dhanavel S, Narayanan V, et al. Fabrication of chitosan/MWCNT nanocomposite as a carrier for 5-fluorouracil and a study of the cytotoxicity of 5-fluorouracil encapsulated nanocomposite towards mcf-7 [J]. Polymer Bulletin, 2016, 73(11): 3221-3236.
9
屈凌波, 平亚红, 李璐珩, 等. 功能性碳纳米管在食品与生物医学领域的应用研究进展 [J]. 河南工业大学学报 (自然科学版), 2019, 40(1): 113-119.
10
Fonseca-Santos B, Chorilli M. An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems [J]. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1349-1362.
11
Prajatelistia E, Lim C, Oh DX, et al. Chitosan and hydroxyapatite composite cross-linked by dopamine has improved anisotropic hydroxyapatite growth and wet mechanical properties [J]. Eng Life Sci, 2015, 15(2): 254-261.
12
Ways MT, Lau WM, Khutoryanskiy VV. Chitosan and its derivatives for application in mucoadhesive drug delivery systems [J]. Polymers (Basel), 2018, 10(3): 267.
13
Zhao D, Yu S, Sun B, et al. Biomedical applications of chitosan and its derivative nanoparticles [J]. Polymers (Basel), 2018, 10(4): 462.
14
刘乐浩, 赵廷凯, 刘和光, 等. 碳纳米管/壳聚糖复合材料的研究进展 [J]. 炭素技术, 2012, 31(3): 31-35.
15
Tsai YC, Chen SY, Lee CA. Amperometric cholesterol biosensors based on carbon nanotube-chitosan-platinum-cholesterol oxidase nanobiocomposite [J]. Sens Actuators B Chem, 2008, 135(1): 96-101.
16
Pramanik A, Jones S, Gao Y, et al. A bio-conjugated chitosan wrapped cnt based 3d nanoporous architecture for separation and inactivation of rotavirus and shigella waterborne pathogens [J]. J Mater Chem B, 2017, 5(48): 9522-9531.
17
Kassem A, Ayoub GM, Malaeb L. Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review [J]. Sci Total Environ, 2019, 668: 566-576.
18
于慧. 碳纳米管/壳聚糖复合材料的制备以及抑菌性研究 [D]. 青岛: 中国海洋大学, 2013.
19
Engel M, Hadar Y, Belkin S, et al. Bacterial inactivation by a carbon nanotube-iron oxide nanocomposite: a mechanistic study using e. Coli mutants [J]. Environ Sci Nano, 2018, 5(2): 372-380.
20
Al-Jumaili A, Alancherry S, Bazaka K, et al. Review on the antimicrobial properties of carbon nanostructures [J]. Materials (Basel), 2017, 10(9): 1066.
21
Kang S, Pinault M, Pfefferle LD, et al. Single-walled carbon nanotubes exhibit strong antimicrobial activity [J]. Langmuir, 2007, 23(17): 8670-8673.
22
Kang S, Mauter MS, Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent [J]. Environ Sci Technol, 2009, 43(7): 2648-2653.
23
Bai Y, Park IS, Lee SJ, et al. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent [J]. Carbon, 2011, 49(11): 3663-3671.
24
Akhavan O, Azimirad R, Safa S. Functionalized carbon nanotubes in zno thin films for photoinactivation of bacteria [J]. Mater Chem Phys, 2011, 130(1): 598-602.
25
Zardini HZ, Davarpanah M, Shanbedi M, et al. Microbial toxicity of ethanolamines-multiwalled carbon nanotubes [J]. J Biomed Mater Res A, 2014, 102(6): 1774-1781.
26
Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
27
欧国松. 改性碳纳米管/海藻酸钠复合纤维的制备及其性能研究 [D]. 杭州: 浙江理工大学, 2019.
28
Aryaei A, Jayatissa AH, Jayasuriya AC. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films [J]. J Biomed Mater Res A, 2014, 102(8): 2704-2712.
29
Aderibigbe BA, Naki T. Chitosan-based nanocarriers for nose to brain delivery [J]. Appl Sci, 2019, 9(11): 2219.
30
Umemura K, Izumi K, Oura S. Probe microscopic studies of DNA molecules on carbon nanotubes [J]. Nanomaterials (Basel), 2016, 6(10): 180.
31
Sanginario A, Miccoli B, Demarchi D. Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment [J]. Biosensors (Basel), 2017, 7(1): 9.
32
Oser P, Düttmann O, Schmid F, et al. Synthesis and characterization of cnt composites for laser-generated ultrasonic waves [J]. Macromol Mater Eng, 2020, 305(4): 1900852.
33
Gleiter H, Hansen N, Horsewell A, et al. Nanostrucutured materials [C]. Proceedings of the Second Rise Intemational Symposium on Metallurgy and Materials Science Denmark Roskilde, 1981: 15-29.
34
Saha LC, Nag OK, Doughty A, et al. An immunologically modified nanosystem based on noncovalent binding between single-walled carbon nanotubes and glycated chitosan [J]. Technol Cancer Res Treat, 2018, 17: 1533033818802313.
35
Villa CH, Dao T, Ahearn I, et al. Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance igg responses to tumor-associated antigens [J]. ACS Nano, 2011, 5(7): 5300-5311.
36
Gao Z, Varela JA, Groc L, et al. Toward the suppression of cellular toxicity from single-walled carbon nanotubes [J]. Biomater Sci, 2016, 4(2): 230-244.
37
Zhou F, Wu S, Song S, et al. Antitumor immunologically modified carbon nanotubes for photothermal therapy [J]. Biomaterials, 2012, 33(11): 3235-3242.
38
Zhou F, Song S, Chen WR, et al. Immunostimulatory properties of glycated chitosan [J]. J Xray Sci Technol, 2011, 19(2): 285-292.
39
Chen WR, Carubelli R, Liu H, et al. Laser immunotherapy: A novel treatment modality for metastatic tumors [J]. Mol Biotechnol, 2003, 25(1): 37-44.
40
Hozumi K, Nomizu M. Mixed peptide-conjugated chitosan matrices as multi-receptor targeted cell-adhesive scaffolds [J]. Int J Mol Sci, 2018, 19(9): 2713.
41
Mi FL, Shyu SS, Wu YB, et al. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing [J]. Biomaterials, 2001, 22(2): 165-173.
42
Biagini G, Bertani A, Muzzarelli R, et al. Wound management with n-carboxybutyl chitosan [J]. Biomaterials, 1991, 12(3): 281-286.
43
Kittana N, Abu-Rass H, Sabra R, et al. Topical aqueous extract of ephedra alata can improve wound healing in an animal model [J]. Chin J Traumatol, 2017, 20(2): 108-113.
44
Chen G, Wu Y, Yu D, et al. Isoniazid-loaded chitosan/carbon nanotubes microspheres promote secondary wound healing of bone tuberculosis [J]. J Biomater Appl, 2019, 33(7): 989-996.
45
Zhao W, Yu W, Zheng J, et al. Effects of carbon nanotubes in a chitosan/collagen-based composite on mouse fibroblast cell proliferation [J]. Cell Mol Neurobiol, 2014, 34(1): 43-50.
[1] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[2] 江伟, 陈小刚, 汪前亮. 骨髓间充质干细胞和丝素蛋白/壳聚糖支架构建组织工程尿液流出道的研究[J]. 中华损伤与修复杂志(电子版), 2021, 16(01): 6-14.
[3] 夏德萌, 王胥人, 王元辰, 熊文韬, 许硕贵, 周潘宇. 含银介孔二氧化硅-壳聚糖复合材料的制备与性能研究[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 256-262.
[4] 陈利, 陈月, 王宗良, 王宇, 章培标. 胶原/羟基磷灰石复合材料的制备及用于骨缺损修复的研究现状[J]. 中华损伤与修复杂志(电子版), 2016, 11(03): 232-235.
[5] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[6] 黄紫华, 孙秋榕, 陈慧敏, 王若旬, 麦穗. 羧甲基壳聚糖稳定液相矿化前体诱导胶原纤维仿生矿化[J]. 中华口腔医学研究杂志(电子版), 2017, 11(03): 136-141.
[7] 林思思, 张新春, 王安训, 张灿, 王焱. 两种消毒方式对壳聚糖水凝胶温敏性能及模型蛋白体外缓释性能的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(01): 44-49.
[8] 季加孚, 王宇宸, 肖琪严. 中国胃癌腹腔镜手术临床研究现状[J]. 中华普外科手术学杂志(电子版), 2019, 13(02): 109-113.
[9] 李建美, 康菲, 肖煜峰. 新模式第二课堂教学法提升生物医学工程本科生创新能力[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 847-848.
[10] 关天培, 方驰华. 光声成像技术及其在原发性肝癌边界界定中的应用[J]. 中华肝脏外科手术学电子杂志, 2016, 05(02): 65-67.
[11] 隋曌, 彭凤, 余凯, 严小虎, 李英, 钟琳, 刘晓银. 吸附NT-3的3D打印胶原蛋白/壳聚糖支架改善脊髓损伤后的运动功能[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 331-338.
[12] 徐弢. 3D打印技术在生物医学领域的应用[J]. 中华神经创伤外科电子杂志, 2015, 01(01): 57-58.
[13] 张慧, 孟桐辉, 刘琳, 张米文, 吕芳. 3D生物打印材料在生物医学领域中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(02): 157-160.
[14] 叶千红. 澳门理工学院生物医学检验技术专业学生大学学习及生活满意度调查[J]. 中华临床实验室管理电子杂志, 2020, 08(04): 205-210.
阅读次数
全文


摘要