切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2021, Vol. 15 ›› Issue (09) : 691 -698. doi: 10.3877/cma.j.issn.1674-0785.2021.09.009

基础研究

生姜提取物6-姜酚对人皮肤成纤维细胞增殖、迁移的影响及其机制研究
侯春1, 王肃生1,(), 梁刚1, 张志华1, 冀航1, 王平平1, 施然1, 李伯辉1   
  1. 1. 510120 广州,广州医科大学附属第一医院整形外科
  • 收稿日期:2021-06-29 出版日期:2021-09-15
  • 通信作者: 王肃生
  • 基金资助:
    广东省中医药局科研项目(20201209)

Effect of 6-gingerol on proliferation and migration of human skin fibroblasts and underlying mechanism

Chun Hou1, Susheng Wang1,(), Gang Liang1, Zhihua Zhang1, Hang Ji1, Pingping Wang1, Ran Shi1, Bohui Li1   

  1. 1. Department of Plastic and Cosmetic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
  • Received:2021-06-29 Published:2021-09-15
  • Corresponding author: Susheng Wang
引用本文:

侯春, 王肃生, 梁刚, 张志华, 冀航, 王平平, 施然, 李伯辉. 生姜提取物6-姜酚对人皮肤成纤维细胞增殖、迁移的影响及其机制研究[J]. 中华临床医师杂志(电子版), 2021, 15(09): 691-698.

Chun Hou, Susheng Wang, Gang Liang, Zhihua Zhang, Hang Ji, Pingping Wang, Ran Shi, Bohui Li. Effect of 6-gingerol on proliferation and migration of human skin fibroblasts and underlying mechanism[J]. Chinese Journal of Clinicians(Electronic Edition), 2021, 15(09): 691-698.

目的

研究不同浓度生姜提取物6-姜酚对人皮肤成纤维细胞增殖、迁移能力的影响,并探讨相关机制。

方法

采用MTT活力试验检测不同浓度6-姜酚(0、25、50、75、100、150、200 mg/L)对皮肤成纤维细胞活性的影响,设空白对照组(人成纤维细胞)、阳性药物组(重组表皮生长因子20 mg/L)、不同浓度(100、50、25 mg/L)6-姜酚处理组。采用流式细胞术检测细胞增殖情况,Transwell实验检测细胞迁移能力,实时荧光定量及蛋白免疫印迹实验检测细胞血小板源性生长因子(PDGF)、血管内皮生长因子(VEGF)、转化生长因子β1(TGF-β1)、基质金属蛋白酶2(MMP2)、基质金属蛋白酶9(MMP9)mRNA和蛋白的表达情况。采用方差分析进行多组样本的差异性比较。

结果

MTT及流式细胞实验结果显示,与空白对照组相比,在50~200 mg/L的范围内随着6-姜酚浓度的增大,皮肤成纤维细胞活性及增殖能力逐渐增加,差异有统计学意义(P<0.05)。Transwell结果显示,与空白对照组相比,100、50 mg/L 6-姜酚处理组的穿膜细胞数明显增多(P均<0.01),而25 mg/L 6-姜酚处理组的迁移细胞数量与空白对照组比较差异无统计学意义(P>0.05)。与空白对照组相比,100、50 mg/L 6-姜酚处理组的细胞羟脯氨酸分泌表达量明显升高(P均<0.01),而25 mg/L 6-姜酚处理组的细胞羟脯氨酸分泌表达量与空白对照组比较,差异无统计学意义(P>0.05)。实时定量聚合酶链反应结果显示,不同浓度6-姜酚作用于皮肤成纤维细胞24 h后,100、50 mg/L 6-姜酚处理组PDGF、VEGF、MMP2、MMP9 mRNA表达水平较空白对照组显著升高,差异均有统计学意义(P<0.05);100 mg/L 6-姜酚处理组TGF-β1 mRNA表达水平较空白对照组显著升高,差异均有统计学意义(P<0.05)。蛋白免疫印迹结果显示,各浓度6-姜酚处理组PDGF、VEGF、MMP9蛋白表达水平均较空白对照组显著升高,差异均有统计学意义(P<0.05);100、50 mg/L 6-姜酚处理组TGF-β1、MMP2蛋白表达水平较空白对照组显著升高,差异有统计学意义(P<0.05)。

结论

6-姜酚能够增强成纤维细胞的增殖和迁移能力,具有促进创面修复的潜能,机制可能与6-姜酚能够促进生长因子及金属蛋白酶的表达相关。

Objective

To investigate the effect of different concentrations of ginger extract 6-gingerol on the proliferation and migration of human skin fibroblasts and explore the possible mechanisms involved.

Methods

MTT assay was used to detect the effect of different concentrations of 6-gingerol (0, 25, 50, 75, 100, 150 and 200 mg/L) on the viability of skin fibroblasts. The cells were then divided into a blank control group (untreated human fibroblasts), a positive drug group (recombinant epidermal growth factor 20 mg/L), and 6-gingerol treatment groups (100, 50, and 25 mg/L). Flow cytometry was used to detect cell proliferation. Transwell assay was used to detect cell migration ability. Real-time PCR and Western blot were used to detect the mRNA and protein expression of platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9), respectively. Analysis of variance was used to compare the differences among multiple groups of samples.

Results

MTT assay and flow cytometry showed that compared with the blank control group, as the concentration of 6-gingerol increased in the range of 50-200 mg/L, the activity and proliferation ability of skin fibroblasts increased gradually, with statistically significant differences (P<0.05). Transwell assay showed that compared with the blank control group, the numbers of migrated cells in the 100 and 50 mg/L 6-gingerol treatment groups were significantly increased (P<0.01 for both), while that in the 25 mg/L 6-gingerol treatment group had no statistically significant change (P>0.05). Compared with the blank control group, the secretion of cellular hydroxyproline in the 100 and 50 mg/L 6-gingerol treatment groups was significantly increased (P<0.01 for both), while in the 25 mg/L 6-gingerol treatment group there was no statistically significant difference (P>0.05). Real-time PCR results showed that after treatment of skin fibroblasts with different concentrations of 6-gingerol for 24 h, the expression levels of PDGF, VEGF, MMP2, and MMP9 mRNA in the 100 and 50 mg/L 6-gingerol treatment groups, and TGF-β1 mRNA in the 100 mg/L 6-gingerol treatment group were significantly higher than those of the blank control group (P<0.05 for all). Western blot analysis showed that the protein expression levels of PDGF, VEGF, and MMP9 in the 6-gingerol treatment group at various concentrations and TGF-β1 and MMP2 in the 100 and 50 mg/L 6-gingerol treatment groups were significantly higher than those in the blank control group (P<0.05 for all).

Conclusion

The 6-gingerol can enhance the proliferation and migration of fibroblasts and has the potential to promote wound repair via mechanism that may be related to promoting the expression of growth factors and metalloproteinases.

表1 实时定量聚合酶链反应引物序列
图1 不同浓度6-姜酚对人皮肤成纤维细胞活性的影响注:与NC比较,*P<0.05,**P<0.01;NC为空白对照组;PC为阳性药物组
图2 不同浓度6-姜酚对人皮肤成纤维细胞增殖能力的影响注:与NC比较,*P<0.05,**P<0.01;NC为空白对照组;PC为阳性药物组
图3 不同浓度6-姜酚对人皮肤成纤维细胞迁移能力的影响(×400)。图a为空白对照组(NC);图b为阳性药物组(PC);图c为100 mg/L 6-姜酚处理组(GIN-H);图d为50 mg/L 6-姜酚处理组(GIN-M);图e为25 mg/L 6-姜酚处理组(GIN-L);图f为各组比较统计图,随着6-姜酚浓度增加,穿膜细胞数量增加注:与NC比较,**P<0.01,***P<0.001
图4 不同浓度6-姜酚对人皮肤成纤维细胞羟脯氨酸分泌的影响注:与NC相比,**P<0.01,***P<0.001;NC为空白对照组;PC为阳性药物组;GIN-H为100 mg/L 6-姜酚处理组;GIN-M为50 mg/L 6-姜酚处理组;GIN-L为25 mg/L 6-姜酚处理组
图5 不同浓度6-姜酚对人皮肤成纤维细胞中生长因子及基质金属蛋白酶mRNA表达的影响注:与NC相比,*P<0.05,**P<0.01,***P<0.001;PDGF为血小板源性生长因子;VEGF为血管内皮生长因子;TGF-β1为转化生长因子-β1;MMP2为基质金属蛋白酶2;MMP9为基质金属蛋白酶9;GAPDH为甘油醛-3-磷酸脱氢酶;NC为空白对照组;PC为阳性药物组;GIN-H为100 mg/L 6-姜酚处理组;GIN-M为50 mg/L 6-姜酚处理组;GIN-L为25 mg/L 6-姜酚处理组
图6 不同浓度6-姜酚对人皮肤成纤维细胞中生长因子及基质金属蛋白酶蛋白表达的影响。蛋白条带图中1~5分别对应NC、PC、GIN-H、GIN-M、GIN-L组注:与NC相比,**P<0.01,***P<0.001;PDGF为血小板源性生长因子;VEGF为血管内皮生长因子;TGF-β1为转化生长因子-β1;MMP2为基质金属蛋白酶2;MMP9为基质金属蛋白酶9;NC为空白对照组;PC为阳性药物组;GIN-H为100 mg/L 6-姜酚处理组;GIN-M为50 mg/L 6-姜酚处理组;GIN-L为25 mg/L 6-姜酚处理组
1
Hu F, Yan Y, Wang CW, et al. Effect and mechanism of ganoderma lucidum polysaccharides on human fibroblasts and skin wound healing in mice [J]. Chin J Integr Med, 2019, 25(3): 1-7.
2
Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis [J]. Int Rev Cytol, 2007, 257: 143-179.
3
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes [J]. Open Biol, 2020, 10(9): 1-14.
4
Bhaskar A, Kumari A, Singh M, et al. [6]-Gingerol exhibits potent anti-mycobacterial and immunomodulatory activity against tuberculosis [J]. Int Immunopharmacol, 2020, 87: 106809.
5
Bhagavathula N, Warner RL, Dasilva M, et al. A combination of curcumin and ginger extract improves abrasion wound healing in corticosteroid-impaired hairless rat skin [J]. Wound Repair Regen, 2009, 17(3): 360-366.
6
Zick SM, , Djuric Z, Ruffin MT, et al. Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects [J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(8): 1930-1936.
7
Baliga MS, Haniadka R, Pereira MM, et al. Update on the chemopreventive effects of ginger and its phytochemicals [J]. Crit Rev Food Sci Nutr, 2011, 51(6): 499-523.
8
Lee C, Park GH, Kim CY, et al. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system [J]. Food Chem Toxicol, 2011, 49(6): 1261-1269.
9
Li XH, McGrath KCY, Tran Van H, et al. Attenuation of proinflammatory responses by S-[6]-gingerol via inhibition of ROS/NF-Kappa B/COX2 activation in HuH7 cells [J]. Evid Based Complement Alternat Med, 2013, 2013: 1-8.
10
Prasad S, Tyagi AK. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer [J]. Gastroenterol Res Pract, 2015, 2015: 142979.
11
Zhang MZ, Xu CL, Liu DD, et al. Oral Delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis [J]. J Crohns Colitis, 2018, 12(2): 217-229.
12
Bhagavathula N, Warner RL, DaSilva M, et al. A combination of curcumin and ginger extract improves abrasion wound healing in corticosteroid-impaired hairless rat skin [J]. Wound Repair Regen, 2009, 17(3): 360-366.
13
Sinno H, Prakash S. Complements and the wound healing cascade: an updated review [J]. Plast Surg Int, 2013, 2013: 1-7.
14
Rousselle P, Montmasson M, Garnier C. Extracellular matrix contribution to skin wound re-epithelialization [J]. Matrix Biol, 2019, 75-76: 12-26.
15
Martin P, Nunan R .Cellular and molecular mechanisms of repair in acute and chronic wound healing [J]. Br J Dermatol, 2015, 173(2): 370-378.
16
Bielefeld KA, Amini-Nik S, Alman BA .Cutaneous wound healing: recruiting developmental pathways for regeneration [J]. Cell Mol Life Sci, 2013, 70(12): 2059-2081.
17
Wang PH, Huang BS, Horng HC, et al. Wound healing [J]. J Chin Med Assoc, 2018, 81(2): 94-101.
18
Greenhalgh DG, Sprugel KH, Murray MJ, et al. PDGF and FGF stimulate wound healing in the genetically diabetic mouse [J]. Am J Pathol, 1990, 136(6): 1235-1246.
19
Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA [J]. Dev Cell, 2014, 31(6): 722-733.
20
Li HH, Fu XB, Zhang L, et al. Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics [J]. J Surg Res, 2008, 145(1): 41-48.
21
Lobmann R, Zemlin C, Motzkau M, et al. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing [J]. J Diabetes Complications, 2006, 20(5): 329-335.
22
Cheng JW, Cheng SW, Wei RL, et al. Anti-vascular endothelial growth factor for control of wound healing in glaucoma surgery [J]. Cochrane Database Syst Rev, 2016(1): 1-39.
23
Angelo LS, Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators [J]. Clin Cancer Res, 2007, 13(10): 2825-2830.
24
Zhou KH, Ma Y, Brogan MS. Chronic and non-healing wounds: the story of vascular endothelial growth factor [J]. Med Hypotheses, 2015, 85(4): 399-404.
25
Leonov YI, Shkumat MS, Klymenko PP, et al. Effect of insulin-like growth factor transgene on wound healing in mice with streptozotocin-induced diabetes [J]. Cytology Genet, 2015, 49(1): 19-26.
26
Roberts AB. Transforming growth factor-beta: activity and efficacy in animal models of wound healing [J]. Wound Repair Regen, 1995, 3(4): 408-418.
27
Ehanire T, Ren LC, Bond J, et al. Angiotensin II stimulates canonical TGF-β signaling pathway through angiotensin type 1 receptor to induce granulation tissue contraction [J]. J Mol Med (Berl), 2015, 93(3): 289-302.
28
Alves CC, Torrinhas RS, Giorgi R, et al. TGF-β1 expression in wound healing is acutely affected by experimental malnutrition and early enteral feeding [J]. Int Wound J, 2014, 11(5): 533-539.
29
Hozzein WN, Badr G, Ghamdi AA, et al. Topical application of propolis enhances cutaneous wound healing by promoting TGF-beta/Smad-mediated collagen production in a streptozotocin-induced type Ⅰ diabetic mouse model [J]. Cell Physiol Biochem, 2015, 37(3): 940-954.
30
Jude EB, Blakytny R, Bulmer J, et al. Transforming growth factor-beta 1, 2, 3 and receptor type Ⅰ and Ⅱ in diabetic foot ulcers [J]. Diabet Med, 2002, 19(6): 440-447.
31
Heublein H, Bader A, Giri S. Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds [J]. Drug Discov Today, 2015, 20(6): 703-717.
32
Lobmann R, Pap T, Ambrosch A, et al. Differential effects of PDGF-BB on matrix metalloproteases and cytokine release in fibroblasts of Type 2 diabetic patients and normal controls in vitro [J]. J Diabetes Complications, 2006, 20(2): 105-112.
33
Armstrong DG, Jude EB. The role of matrix metalloproteinases in wound healing [J]. J Am Podiatr Med Assoc, 2002, 92(1): 12-18.
34
Martins VL, Caley M, O'Toole EA. Matrix metalloproteinases and epidermal wound repair [J]. Cell Tissue Res, 2013, 351(2): 255-268.
35
Liu D, Wu MQ, Lu Y, et al. Protective effects of 6-Gingerol on vascular endothelial cell injury induced by high glucose via activation of PI3K-AKT-eNOS pathway in human umbilical vein endothelial cells [J]. Biomed Pharmacother, 2017, 93: 788-795.
[1] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[2] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[3] 闫凯悦, 邓慧玲, 张玉凤, 宋鹤, 陈媛, 席淼. 胰岛素样生长因子-1与手足口病重症化的相关性研究[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 151-157.
[4] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[5] 王博, 白子锐, 李坚. 近红外二区新型血管内皮生长因子受体靶向探针在结直肠癌小鼠模型中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 173-177.
[6] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[9] 刘立, 陈诚, 李新科, 刘凯, 屠昌明. 血清IL-6、hs-CRP、MMP-9联合检测在腹股沟疝无张力修补术预后评价中的价值分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 405-409.
[10] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[11] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[12] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[13] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[14] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要