切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2022, Vol. 16 ›› Issue (11) : 1120 -1125. doi: 10.3877/cma.j.issn.1674-0785.2022.11.015

所属专题: 急危重症

临床研究

基于贝叶斯网络模型在脓毒症患者血小板减少症发生因素中的分析
童译庆1, 张建明1, 贺星星1, 傅一牧1, 赵刚1, 封启明1,()   
  1. 1. 200030 上海,上海市第六人民医院急诊科
  • 收稿日期:2021-12-24 出版日期:2022-11-15
  • 通信作者: 封启明
  • 基金资助:
    上海市第六人民医院2021年度院级回顾性临床研究课题(ynhg202107); 上海促进市级医院临床技能与临床创新能力三年行动计划项目(SHDC2020CR6030)

Identification of factors related to thrombocytopenia in patients with sepsis based on Bayesian network model

Yiqing Tong1, Jianming Zhang1, Xingxing He1, Yimu Fu1, Gang Zhao1, Qiming Feng1,()   

  1. 1. Department of Emergency, Shanghai Sixth People's Hospital, Shanghai 200030, China
  • Received:2021-12-24 Published:2022-11-15
  • Corresponding author: Qiming Feng
引用本文:

童译庆, 张建明, 贺星星, 傅一牧, 赵刚, 封启明. 基于贝叶斯网络模型在脓毒症患者血小板减少症发生因素中的分析[J/OL]. 中华临床医师杂志(电子版), 2022, 16(11): 1120-1125.

Yiqing Tong, Jianming Zhang, Xingxing He, Yimu Fu, Gang Zhao, Qiming Feng. Identification of factors related to thrombocytopenia in patients with sepsis based on Bayesian network model[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2022, 16(11): 1120-1125.

目的

分析脓毒症患者血小板减少症发生因素,并构建脓毒症患者发生血小板减少症的贝叶斯网络模型,探讨脓毒症患者发生血小板减少症及其相关因素间的网络关系,通过网络模型推理反映各影响因素对脓毒症患者发生血小板减少症的影响程度。

方法

选取上海市第六人民医院急诊重症监护病房(EICU)2019年1月至2020年12月收治的98例脓毒症患者。其中男53例,女45例,年龄(59.37±4.28)岁。统计所有患者ICU住院期间血小板减少症发生情况并依此将患者分为发生组与未发生组,设计基线资料调查表收集两组基线资料,应用Logistics回归分析对脓毒症患者发生血小板减少症的影响因素进行初筛,各影响因素间及其与脓毒症患者发生血小板减少症的关系运用贝叶斯网络模型分析。

结果

98例脓毒症患者中发生血小板减少症33例(33.67%)。两组患者的真菌性感染、感染性休克占比及白细胞介素6(IL-6)、血栓弹力图最大振幅(MA)值比较差异有统计学意义(均P<0.05),组间其他资料比较差异无统计学意义(P>0.05)。经Logistic回归分析结果显示,真菌性感染(OR=7.185,95%CI为1.168-44.184)、感染性休克(OR=4.024,95%CI为1.081-14.983)、血清IL-6过表达(OR=9.360,95%CI为2.283-38.379)均是脓毒症患者血小板减少症发生的危险因素(P<0.05),MA值过表达(OR=0.814,95%CI为0.734-0.902)是脓毒症患者血小板减少症发生的保护因素(P<0.05);有向无环的贝叶斯网络结构图形显示,真菌性感染、感染性休克、IL-6、MA值与脓毒症患者血小板减少症发生有关。

结论

脓毒症患者血小板减少症发生可能与真菌性感染、感染性休克、高IL-6水平、低MA值有关。

Objective

To identify the factors related to thrombocytopenia in patients with sepsis, and to construct a Bayesian network model of thrombocytopenia in those patients to explore the network relationship between thrombocytopenia and its related factors and to reflect the extent of influence of various factors on thrombocytopenia in patients with sepsis by network model reasoning.

Methods

Ninety-eight patients with sepsis admitted to the intensive care unit (ICU) of Shanghai Sixth People's Hospital from January 2019 to December 2020 were selected. Among them, there were 53 males and 45 females, with an age of (59.37±4.28) years. The occurrence of thrombocytopenia in all patients during ICU stay was statistically analyzed and the patients were divided into either an occurrence group or a non-occurrence group according to the occurrence of thrombocytopenia or not. Baseline data questionnaire was designed to collect baseline data of the two groups. Logistic regression analysis was used to screen the influencing factors of thrombocytopenia in patients with sepsis, and the relationship between each influencing factor and thrombocytopenia in patients with sepsis was analyzed using the Bayesian network model.

Results

Among the 98 patients with sepsis, 33 had thrombocytopenia (33.67%). Fungal infection, septic shock, interleukin-6 (IL-6) level, and maximum amplitude of thromboelastogram (MA) differed significantly between the two groups (P<0.05 for all), but there was no statistical significant difference in other data between the two groups (P>0.05 for all). Logistic regression analysis demonstrated that fungal infection (odds ratio [OR]=7.185, 95% confidence interval [CI]:1.168-44.184), septic shock (OR=4.024, 95%CI:1.081-14.983), and overexpression of serum IL-6 (OR=9.360, 95%CI:2.283-38.379) were risk factors for thrombocytopenia in patients with sepsis (P<0.05 for all), while elevation of MA value (OR=0.814, 95%CI:0.734-0.902) was a protective factor for thrombocytopenia (P<0.05). Directed acyclic Bayesian network structure graph showed that fungal infection, septic shock, IL-6, and MA value were associated with thrombocytopenia in patients with sepsis.

Conclusion

The occurrence of thrombocytopenia in patients with sepsis may be related to fungal infection, septic shock, high IL-6 level, and low MA value

表1 两组脓毒症患者一般资料比较
表2 2组脓毒症患者的实验室检查资料比较(
xˉ
±s
表3 脓毒症患者血小板减少症发生因素的logistics回归分析
表4 受试者工作特征(ROC)曲线检验各指标预测脓毒症患者发生血小板减少症最佳截断值
表5 指标赋值说明
表6 脓毒症患者血小板减少症发生的条件概率分布表
1
Li MF, Li XL, Fan KL, et al. Platelet desialylation is a novel mechanism and a therapeutic target in thrombocytopenia during sepsis: an open-label, multicenter, randomized controlled trial [J]. J Hematol Oncol, 2017, 10(1):104.
2
Koyama K, Katayama S, Muronoi T, et al. Time course of immature platelet count and its relation to thrombocytopenia and mortality in patients with sepsis [J]. PLoS One, 2018, 13(1):e0192064.
3
周南君, 汤展宏. 血小板减少症对脓毒症患者预后的影响:系统回顾和Meta分析 [J].中国实用内科杂志, 2021, 41(3):238-242,256.
4
Bedet A, Razazi K, Boissier F, et al. Mechanisms of thrombocytopenia during septic shock: a multiplex cluster analysis of endogenous sepsis mediators [J]. Shock, 2018, 49(6):641-648.
5
江玲芝, 汪明珊, 王金柱, 等. 脓毒症合并急性肾损伤患者继发血小板减少症的危险因素分析 [J].中华临床感染病杂志, 2017, 10(3):187-193.
6
中国医师协会急诊医师分会, 中国研究型医院学会休克与脓毒症专业委员会. 中国脓毒症/脓毒性休克急诊治疗指南(2018) [J].中国急救医学, 2018, 38(9):741-756.
7
中华医学会血液学分会止血与血栓学组. 成人原发免疫性血小板减少症诊断与治疗中国专家共识(2016年版) [J].中华血液学杂志, 2016, 37(2):89-93.
8
Guirgis FW, Puskarich MA, Smotherman C, et al. Development of a simple sequential organ failure assessment score for risk assessment of emergency department patients with sepsis [J]. J Intensive Care Med, 2020, 35(3):270-278.
9
谢铎文, 潘景业. 急性生理学与慢性健康状况评分系统:1978-2010 [J].中国中西医结合急救杂志, 2010, 17(6):378-381.
10
廖秋霞, 席修明. 脓毒症患者发生血小板减少的危险因素及其对临床结局的影响 [J].内科急危重症杂志, 2020, 26(4):310-314.
11
Zhou X, Tang G. Some doubts on the meta-analysis of the clinical significance of thrombocytopenia complicating sepsis [J]. J Infect, 2019, 79(3):277-287.
12
陈静, 龚宗炼, 葛颖, 等. 脓毒症患者感染病原学特点及血液指标的监测分析 [J].中华医院感染学杂志, 2019, 29(17):2571-2574.
13
Harbi GA, Chaari A. Platelets parameters in septic shock: clinical usefulness and prognostic value [J]. Blood Coagul Fibrinolysis, 2020, 31(7):421-425.
14
Fogagnolo A, Taccone FS, Campo G, et al. Impaired platelet reactivity in patients with septic shock: a proof-of-concept study [J]. Platelets, 2020, 31(5):652-660.
15
谢然, 陈礼文, 张浩, 等. IL-6评估发热伴血小板减少综合征患者病情及预后研究 [J].安徽医科大学学报, 2021, 56(9):1475-1479.
16
李健, 许华, 王兵, 等. 白细胞介素-18在脓毒症血小板减少症中的表达及临床意义 [J].实用医学杂志, 2018, 34(02):205-208.
17
崔利丹, 金志鹏, 王琪, 等. 血栓弹力图在脓毒症及脓毒性休克患儿并弥散性血管内凝血病情评估中的价值 [J].中华实用儿科临床杂志, 2017, 32(18):1398-1401.
18
Ninan KF, Iyadurai R, Varghese JK, et al. Thromboelastograph: a prognostic marker in sepsis with organ dysfunction without overt bleeding [J]. J Crit Care, 2021, 65:177-183.
[1] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 张婧琦, 江洋, 孙佳璐, 唐兴喆, 赵宇飞, 崔颖, 李信响, 戴景月, 傅琳, 彭新桂. 基于肾周CT特征结合血清肌酐水平探讨脓毒症伴急性肾损伤的早期识别[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 285-292.
[5] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[6] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[7] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[8] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[9] 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识编写组. 成人脓毒症患者β-内酰胺类抗生素延长输注专家共识[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 313-324.
[10] 陈曦, 吴宗盛, 郑明珠, 邱海波. 胸腺萎缩在脓毒症免疫紊乱中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 379-383.
[11] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[12] 胡梓菡, 彭菲, 孙骎, 杨毅. 细胞外囊泡在脓毒症血管内皮损伤作用中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 265-270.
[13] 陈惠英, 邱敏珊, 邵汉权. 脓毒症诱发肠黏膜屏障功能损伤的风险因素模型构建与应用效果[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 448-452.
[14] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[15] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
阅读次数
全文


摘要