切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (02) : 210 -214. doi: 10.3877/cma.j.issn.1674-0785.2023.02.017

综述

抑郁症患者静息态脑电功能连接的研究进展
郭梦, 雷蕾, 杨春霞, 孙宁, 张爱霞, 张克让()   
  1. 030000 太原,山西医科大学第一临床医学院
  • 收稿日期:2021-12-29 出版日期:2023-02-15
  • 通信作者: 张克让
  • 基金资助:
    山西省高等学校中青年拔尖创新人才基金; 2019年山西省省筹资金资助回国留学人员科研项目

Progress in research of resting state EEG functional connectivity in patients with depression

Meng Guo, Lei Lei, Chunxia Yang, Ning Sun, Aixia Zhang, Kerang Zhang()   

  1. Department of Mental Health, Shanxi Medical University, Taiyuan 030000, China
  • Received:2021-12-29 Published:2023-02-15
  • Corresponding author: Kerang Zhang
引用本文:

郭梦, 雷蕾, 杨春霞, 孙宁, 张爱霞, 张克让. 抑郁症患者静息态脑电功能连接的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(02): 210-214.

Meng Guo, Lei Lei, Chunxia Yang, Ning Sun, Aixia Zhang, Kerang Zhang. Progress in research of resting state EEG functional connectivity in patients with depression[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(02): 210-214.

抑郁症诊治多依赖于主观量表评估和医生经验判定,一致性差且误诊率高,缺乏客观有效、方便快捷的定量诊断指标与方法。脑电图(EEG)是一种方便且获取抑郁症大脑病理变化的客观有效方法,近年来抑郁症患者中存在异常的静息态EEG功能连接模式,因此寻找其功能连接性的特征有助于抑郁症的诊疗。本文全面综述抑郁症 EEG 功能连接性研究现状及存在问题以期推进抑郁诊治方法研究。

Diagnosis and treatment of depression mainly rely on subjective scale evaluation and doctors' judgment, which often lead to poor consistency and high misdiagnosis rate, and there is a lack of objective, effective, convenient, and quick quantitative diagnostic indicators and methods. Electroencephalography (EEG) is a convenient and effective method to obtain the pathological changes of the depressed brain. In recent years, abnormal functional connectivity patterns of resting EEG have been found in depressed patients. Therefore, finding the characteristics of functional connectivity is helpful for the diagnosis and treatment of depression. This paper reviews the current status and problems in EEG functional connectivity research in depression in order to promote the study of diagnosis and treatment of depression.

1
Friedrich MJ. Depression is the leading cause of disability around the world [J]. JAMA, 2017, 18, 317(15):1517.
2
de Aguiar Neto FS, Rosa JLG. Depression biomarkers using non-invasive EEG: A review [J]. Neurosci Biobehav Rev, 2019, 105: 83-93.
3
Fonzo GA, Goodkind MS, Oathes DJ, et al. PTSD psychotherapy outcome predicted by brain activation during emotional reactivity and regulation [J]. Am J Psychiatry, 2017, 174(12): 1163-1174.
4
Zhang Y, Wu W, Toll RT, et al. Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography [J]. Nat Biomed Eng, 2021, 5(4): 309-323.
5
Dell'Acqua C, Ghiasi S, Messerotti Benvenuti S, et al. Increased functional connectivity within alpha and theta frequency bands in dysphoria: A resting-state EEG study [J]. J Affect Disord, 2021, 281: 199-207.
6
Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S. Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression [J]. PLoS One, 2012, 7(2): e32508.
7
Linkenkaer-Hansen K, Monto S, Rytsälä H, et al. Breakdown of long-range temporal correlations in theta oscillations in patients with major depressive disorder [J]. J Neurosci, 2005, 25(44): 10131-10137.
8
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clin Neurophysiol, 1999, 110(11): 1842-1857.
9
Thatcher RW, Krause PJ, Hrybyk M. Cortico-cortical associations and EEG coherence: a two-compartmental model [J]. Electroencephalogr Clin Neurophysiol, 1986, 64(2): 123-143.
10
von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization [J]. Int J Psychophysiol, 2000, 38(3): 301-313.
11
Del Percio C, Iacoboni M, Lizio R, et al. Functional coupling of parietal α rhythms is enhanced in athletes before visuomotor performance: a coherence electroencephalographic study [J]. Neuroscience, 2011, 23, 175: 198-211.
12
Babiloni C, Brancucci A, Vecchio F, et al. Anticipation of somatosensory and motor events increases centro-parietal functional coupling: an EEG coherence study [J]. Clin Neurophysiol, 2006, 117(5): 1000-1008.
13
Sauseng P, Klimesch W, Stadler W, et al. A shift of visual spatial attention is selectively associated with human EEG alpha activity [J]. Eur J Neurosci, 2005, 22(11): 2917-2926.
14
O'Connor KP, Shaw JC, Ongley CO. The EEG and differential diagnosis in psychogeriatrics [J]. Br J Psychiatry, 1979, 135: 156-162.
15
Fingelkurts AA, Fingelkurts AA, Rytsälä H, et al. Impaired functional connectivity at EEG alpha and theta frequency bands in major depression [J]. Hum Brain Mapp, 2007, 28(3):247-261.
16
刘潇雅, 刘爽, 郭冬月, 等. 抑郁症脑电特异性研究进展 [J]. 中国生物医学工程学报, 2020, 39(3): 351-361.
17
Armitage R, Emslie GJ, Hoffmann RF, et al. Delta sleep EEG in depressed adolescent females and healthy controls [J]. J Affect Disord, 2001, 63(1-3): 139-148..
18
Epp JR, Beasley CL, Galea LA. Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure [J]. Neuropsychopharmacology, 2013, 38(11): 2297-2306.
19
Lee SM, Jang KI, Chae JH. Electroencephalographic correlates of suicidal ideation in the Theta band [J]. Clin EEG Neurosci, 2017, 48(5): 316-321.
20
Haghighi M, Ludyga S, Rahimi B, et al. In patients suffering from major depressive disorders, quantitative EEG showed favorable changes in left and right prefrontal cortex [J]. Psychiatry Res, 2017, 251: 137-141.
21
Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex [J]. Behav Brain Res, 2009, 2, 201(2): 239-243.
22
Womelsdorf T, Vinck M, Leung LS, et al. Selective theta-synchronization of choice-relevant information subserves goal-directed behavior [J]. Front Hum Neurosci, 2010, 4: 210.
23
Debener S, Beauducel A, Nessler D, et al. Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients [J]. Neuropsychobiology, 2000, 41(1): 31-37.
24
Knott V, Mahoney C, Kennedy S, et al. EEG power, frequency, asymmetry and coherence in male depression [J]. Psychiatry Res, 2001, 106(2): 123-140.
25
Pizzagalli DA, Sherwood RJ, Henriques JB, et al. Frontal brain asymmetry and reward responsiveness: a source-localization study [J]. Psychol Sci, 2005, 16(10): 805-813.
26
Segrave RA, Thomson RH, Cooper NR, et al. Upper alpha activity during working memory processing reflects abnormal inhibition in major depression [J]. J Affect Disord, 2010, 127(1-3): 191-198.
27
Kemp AH, Griffiths K, Felmingham KL, et al. Disorder specificity despite comorbidity: resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder [J]. Biol Psychol, 2010, 85(2): 350-354.
28
Fingelkurts AA, Fingelkurts AA, Rytsälä H, et al. Composition of brain oscillations in ongoing EEG during major depression disorder [J]. Neurosci Res, 2006, 56(2): 133-144.
29
Stewart JL, Bismark AW, Towers DN, et al. Resting frontal EEG asymmetry as an endophenotype for depression risk: sex-specific patterns of frontal brain asymmetry [J]. J Abnorm Psychol, 2010, 119(3): 502-512.
30
Kentgen LM, Tenke CE, Pine DS, et al. Electroencephalographic asymmetries in adolescents with major depression: influence of comorbidity with anxiety disorders [J]. J Abnorm Psychol, 2000, 109(4): 797-802.
31
Bruder GE, Tenke CE, Warner V, et al. Electroencephalographic measures of regional hemispheric activity in offspring at risk for depressive disorders [J]. Biol Psychiatry, 2005, 57(4): 328-335.
32
Bruder GE, Tenke CE, Warner V, et al. Grandchildren at high and low risk for depression differ in EEG measures of regional brain asymmetry [J]. Biological Psychiatry, 2007, 62(11): 1317-1323.
33
Tomarken AJ, Dichter GS, Garber J, et al. Resting frontal brain activity: linkages to maternal depression and socio-economic status among adolescents [J]. Biol Psychol, 2004, 67(1-2): 77-102.
34
MacLean MH, Arnell KM, Cote KA. Resting EEG in alpha and beta bands predicts individual differences in attentional blink magnitude [J]. Brain Cogn, 2012, 78(3): 218-229.
35
Olbrich S, Arns M. EEG biomarkers in major depressive disorder: discriminative power and prediction of treatment response [J]. Int Rev Psychiatry, 2013, 25(5): 604-618.
36
Jaworska N, Blier P, Fusee W, et al. α Power, α asymmetry and anterior cingulate cortex activity in depressed males and females [J]. J Psychiatr Res. 2012, 46(11): 1483-1491.
37
Li Y, Kang C, Wei Z, et al. Beta oscillations in major depression-signalling a new cortical circuit for central executive function [J]. Sci Rep. 2017 Dec 21; 7(1):18021.
38
Gola M, Magnuski M, Szumska I, et al. EEG beta band activity is related to attention and attentional deficits in the visual performance of elderly subjects [J]. Int J Psychophysiol, 2013, 89(3): 334-341.
39
O'Neill GC, Barratt EL, Hunt BA, et al. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods [J]. Phys Med Biol, 2015, 60(21): R271-295.
40
Brookes MJ, Woolrich MW, Barnes GR. Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage [J]. Neuroimage, 2012, 63(2): 910-920.
41
Siems M, Pape AA, Hipp JF, et al. Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG [J]. Neuroimage, 2016, 129: 345-355.
42
Arikan MK, Gunver MG, Tarhan N, Metin B. High-Gamma: A biological marker for suicide attempt in patients with depression [J]. J Affect Disord, 2019, 254: 1-6.
43
Strelets VB, Garakh ZhV, Novototskii-Vlasov VY. Comparative study of the gamma rhythm in normal conditions, during examination stress, and in patients with first depressive episode [J]. Neurosci Behav Physiol, 2007, 37(4): 387-394.
44
Arikan MK, Metin B, Tarhan N. EEG gamma synchronization is associated with response to paroxetine treatment [J]. J Affect Disord, 2018, 235: 114-116.
45
Lee TW, Wu YT, Yu YW, et al. The implication of functional connectivity strength in predicting treatment response of major depressive disorder: a resting EEG study [J]. Psychiatry Res, 2011, 194(3): 372-377.
46
Beck AT. The evolution of the cognitive model of depression and its neurobiological correlates [J]. Am J Psychiatry, 2008, 165(8): 969-977.
47
Demaree HA, Everhart DE, Youngstrom EA, et al. Brain lateralization of emotional processing: historical roots and a future incorporating "dominance" [J]. Behav Cogn Neurosci Rev, 2005, 4(1): 3-20.
48
Fingelkurts AA, Fingelkurts AA. Three-dimensional components of selfhood in treatment-naive patients with major depressive disorder: A resting-state qEEG imaging study [J]. Neuropsychologia, 2017, 99: 30-36.
49
Herrera-Guzmán I, Gudayol-Ferré E, Herrera-Abarca JE, et al. Major depressive disorder in recovery and neuropsychological functioning: effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with major depressive disorder in recovery [J]. J Affect Disord, 2010, 123(1-3): 341-350.
50
Schulman JJ, Cancro R, Lowe S, et al. Imaging of thalamocortical dysrhythmia in neuropsychiatry [J]. Front Hum Neurosci, 2011, 5: 69.
51
Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain oscillations [J]. Neurosci Biobehav Rev, 2007, 31(3): 377-395.
52
Schyns PG, Thut G, Gross J. Cracking the code of oscillatory activity [J]. PLoS Biol, 2011, 9(5): e1001064.
53
Epstein J, Perez DL, Ervin K, et al. Failure to segregate emotional processing from cognitive and sensorimotor processing in major depression [J]. Psychiatry Res, 2011, 193(3): 144-150.
54
Mu Y, Han S. Neural oscillations involved in self-referential processing [J]. Neuroimage, 2010, 53(2): 757-768.
55
Crespo-Garcia M, Cantero JL, Pomyalov A, et al. Functional neural networks underlying semantic encoding of associative memories [J]. Neuroimage, 2010, 50(3): 1258-1270.
56
Kudina TA, Sudnitsyn VV, Kutyreva EV, et al. The serotonin reuptake inhibitor fluoxetine suppresses theta oscillations in the electroencephalogram of the rabbit hippocampus [J]. Neurosci Behav Physiol, 2004, 34(9): 929-933.
57
Engel AK, Fries P. Beta-band oscillations--signalling the status quo? [J]. Curr Opin Neurobiol, 2010, 20(2): 156-165.
58
Sauseng P, Klimesch W, Freunberger R, et al. Relevance of EEG alpha and theta oscillations during task switching [J]. Exp Brain Res, 2006, 170(3): 295-301.
59
Roh SC, Park EJ, Shim M, et al. EEG beta and low gamma power correlates with inattention in patients with major depressive disorder [J]. J Affect Disord, 2016, 204: 124-130.
60
Egner T, Gruzelier JH. EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials [J]. Clin Neurophysiol, 2004, 115(1): 131-139.
61
Herrmann CS, Fründ I, Lenz D. Human gamma-band activity: a review on cognitive and behavioral correlates and network models [J]. Neurosci Biobehav Rev, 2010, 34(7): 981-992.
62
Howard MW, Rizzuto DS, Caplan JB, et al. Gamma oscillations correlate with working memory load in humans [J]. Cereb Cortex, 2003, 13(12): 1369-1374.
63
Velasques B, Machado S, Portella CE, et al. Electrophysiological analysis of a sensorimotor integration task [J]. Neurosci Lett, 2007, 426(3): 155-159.
64
Palva S, Palva JM. Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs [J]. Trends Cogn Sci, 2012, 16(4): 219-230.
65
Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG [J]. Hum Brain Mapp, 2009, 30(6): 1857-1865.
66
He B, Astolfi L, Valdes-Sosa PA, et al. Electrophysiological brain connectivity: theory and implementation [J]. IEEE Trans Biomed Eng, 2019, 10: 1109.
67
Brunner C, Billinger M, Seeber M, et al. Volume conduction influences scalp-based connectivity estimates [J]. Front Comput Neurosci, 2016, 10:121.
[1] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[2] 孙环蕊, 张若鹏. 复发性流产与肠道微生物群失衡[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 506-511.
[3] 冀京雷, 李秀丽, 贾亚男, 冯会敏, 刘丽艳. 改良aEEG评分评估高危足月低体质量新生儿脑损伤的效果分析[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 165-169.
[4] 李青华, 靳晨彦, 王艳军, 庄禹童, 何江弘, 郭文治. 七氟醚与丙泊酚对慢性意识障碍患者全身麻醉期间脑电的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 12-18.
[5] 吴新高, 李伟, 马俊, 刘红, 黄平. 癫痫患者定量脑电图功率谱相关参数与认知功能损伤的相关性研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 304-308.
[6] 杨新宇, 彭建文, 李辉萍, 陶希, 方翠霓, 宋涛. 脑电非线性分析在卒中后意识障碍的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 185-190.
[7] 王煜泽, 高文文, 杨磊, 赵海康. 无创监测技术在脑水肿应用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 113-117.
[8] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[9] 丁浩然, 关宇光, 王雄飞, 赵萌, 王静, 王梦阳, 滕鹏飞, 栾国明. 立体定向脑电图引导下多电极立体适形射频热凝毁损治疗药物难治性岛叶癫痫的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(04): 227-233.
[10] 沈伶俐, 刘晓鸣, 李玮玮, 夏露, 周强. 自身免疫性脑炎患儿视频脑电图监测期间基于共享信息系统的协同干预模式的作用分析[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(03): 162-166.
[11] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[12] 潘惠, 王明, 杨忠, 杜向东. 低频重复经颅磁刺激辅助治疗伴不同特征抑郁症的对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(05): 562-568.
[13] 林邹卿, 徐晓燕, 曹磊明, 王志强, 王国强, 张凯. S-氯胺酮治疗重度抑郁症疗效、安全性观察及机制讨论[J]. 中华临床医师杂志(电子版), 2022, 16(08): 719-724.
[14] 尹营营, 袁勇贵. 抑郁症精神运动迟滞的评估方法及生物学机制研究[J]. 中华临床医师杂志(电子版), 2022, 16(08): 712-718.
[15] 潘鑫, 王华, 王忻, 顾慧, 王超. 院前右美托咪啶与丙泊酚对需要机械通气的成人危重症患者镇静效果的比较[J]. 中华卫生应急电子杂志, 2022, 08(06): 331-334.
阅读次数
全文


摘要