1 |
勾晓梅, 李雪丽, 隋源, 等. 大黄素对烟曲霉菌性角膜炎模型大鼠的抗炎作用机制研究[J]. 国际眼科杂志, 2019, 19(9): 1466-1469.
|
2 |
刘阳, 张昊, 余伟, 等. 大黄素对口腔鳞状细胞癌增殖、侵袭和迁移的影响 [J]. 口腔医学研究, 2021, 37(11): 1042-1047.
|
3 |
刘婧怡, 蔡仑, 段浩, 等. 大黄素抑制MRSA生物膜活性及其作用机制研究 [J]. 陆军军医大学学报, 2022, 44(7): 684-690.
|
4 |
Hazrat Bilal, MuhammadShafiq, Hou Bing, et al. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis [J]. Virulence, 2022, 13(1): 1573-1589.
|
5 |
Yang C, Bian Z, Blechert O, et al. High prevalence of HIV-related cryptococcosis and increased resistance to fluconazole of the cryptococcus neoformans complex in Jiangxi province, south central China [J]. Front Cell Infect Microbiol, 2021, 11: 723251.
|
6 |
Rolta R, Kumar V, Sourirajan A, et al. Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens [J]. J Ethnopharmacol, 2020, 257: 112867.
|
7 |
周磊, 云宝仪, 汪业菊, 等. 大黄素对金黄色葡萄球菌的抑菌作用机制 [J]. 中国生物化学与分子生物学报, 2011, 27(12): 1156-1160.
|
8 |
Alhadrami HA, Abdulaal WH, Hassan HM, et al. In silico-based discovery of natural anthraquinones with potential against multidrug-resistant E. coli [J]. Pharmaceuticals (Basel), 2022, 15(1): 86.
|
9 |
Ma W, Zhang M, Cui Z, et al. Aloe-emodin-mediated antimicrobial photodynamic therapy against dermatophytosis caused by Trichophyton rubrum [J]. Microb Biotechnol, 2022, 15(2): 499-512.
|
10 |
Ueno K, Otani Y, Yanagihara N, et al. Cryptococcus gattii evades CD11b-mediated fungal recognition by coating itself with capsular polysaccharides [J]. Eur J Immunol, 2021, 51(9): 2281-2295.
|
11 |
Freitas GJC, Santos DA. Cryptococcus gattii polysaccharide capsule: An insight on fungal-host interactions and vaccine studies [J]. Eur J Immunol, 2021, 51(9): 2206-2209.
|
12 |
张晶, 林晨, 岑颖洲, 等. MTT法在抗真菌药敏实验中的应用 [J]. 暨南大学学报(自然科学与医学版), 2003(6): 36-40.
|
13 |
Wang Z, Chen L, Huang Y, et al. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis [J]. Redox Biol, 2021, 46: 102082.
|
14 |
Ding JL, Li XH, Lei JH, et al. Succinate dehydrogenase subunit C contributes to mycelial growth and development, stress response, and virulence in the insect parasitic fungus beauveria bassiana [J]. Microbiol Spectr, 2022, 10(5): e0289122.
|
15 |
Zhang M, Cheng Y, Zhai Y, et al. Attenuated succinate accumulation relieves neuronal injury induced by hypoxia in neonatal mice [J]. Cell Death Discov, 2022, 8(1): 138.
|
16 |
Sun Y, Li J, Xu Z, et al. Chidamide, a novel histone deacetylase inhibitor, inhibits multiple myeloma cells proliferation through succinate dehydrogenase subunit A [J]. Am J Cancer Res, 2019, 9(3): 574-584.
|
17 |
Moosavi B, Zhu XL, Yang WC, et al. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect [J]. Eur J Cell Biol, 2020, 99(1): 151057.
|
18 |
Shishodia SK, Shankar J. Proteomic analysis revealed ROS-mediated growth inhibition of Aspergillus terreus by shikonin [J]. J Proteomics, 2020, 224: 103849.
|
19 |
Chen C, Cai N, Wan C, et al. Carvacrol delays Phomopsis stem-end rot development in pummelo fruit in relation to maintaining energy status and antioxidant system [J]. Food Chem, 2022, 372: 131239.
|
20 |
Fan W, Li B, Du N, et al. Energy metabolism as the target of 3-phenyllactic acid against Rhizopus oryzae [J]. Int J Food Microbiol, 2022, 369: 109606.
|
21 |
Ding JL, Li XH, Lei JH, et al. Succinate dehydrogenase subunit C contributes to mycelial growth and development, stress response, and virulence in the insect parasitic fungus beauveria bassiana [J]. Microbiol Spectr, 10(5): e0289122.
|
22 |
Rolta R, Kumar V, Sourirajan A, et al. Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens [J]. J Ethnopharmacol, 2020, 257: 112867.
|
23 |
高峰, 周培根, 余鹏. 黄芩素、小檗碱、大黄酸、大黄素与阿莫西林联合抗幽门螺杆菌的药敏实验研究 [J]. 四川中医, 2017, 35(10): 141-144.
|
24 |
刘芳. 大黄素联合美罗培南、阿米卡星对多重耐药铜绿假单胞菌的体外抑制作用 [D].中南大学, 2012.
|