切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 314 -319. doi: 10.3877/cma.j.issn.1674-0785.2023.03.014

基础研究

大黄素提高新生隐球菌琥珀酸脱氢酶活性增强氧化作用的研究
王雪, 徐佳音, 廖丽娟, 黄干荣, 黄永毅, 韦贤, 黄衍强, 黄亮()   
  1. 533000 广西百色,右江民族医学院耐药微生物感染防治研究重点实验室,右江民族医学院研究生院
  • 收稿日期:2023-02-01 出版日期:2023-03-15
  • 通信作者: 黄亮
  • 基金资助:
    国家自然科学基金(32060018); 中央引导地方发展项目(桂科ZY20198004)

Emodin enhances succinate dehydrogenase activity and oxidation in Cryptococcus neoformans

Xue Wang, Jiayin Xu, Lijuan Liao, Ganrong Huang, Yongyi Huang, Xian Wei, Yanqiang Huang, Liang Huang()   

  1. Guangxi University Key Laboratory of Drug-Resistant Microbial Infection Control, Baise 533000, China
  • Received:2023-02-01 Published:2023-03-15
  • Corresponding author: Liang Huang
引用本文:

王雪, 徐佳音, 廖丽娟, 黄干荣, 黄永毅, 韦贤, 黄衍强, 黄亮. 大黄素提高新生隐球菌琥珀酸脱氢酶活性增强氧化作用的研究[J]. 中华临床医师杂志(电子版), 2023, 17(03): 314-319.

Xue Wang, Jiayin Xu, Lijuan Liao, Ganrong Huang, Yongyi Huang, Xian Wei, Yanqiang Huang, Liang Huang. Emodin enhances succinate dehydrogenase activity and oxidation in Cryptococcus neoformans[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(03): 314-319.

目的

探索大黄素提高新生隐球菌(cryptococcus neoformans,C. neoformans)琥珀酸脱氢酶(succinate dehydrogenase,SDH)活性,增强氧化作用,阐述大黄素新的生物学功能,提高以SDH为靶点的抗菌药物的敏感性,发挥协同抗菌作用,缓解临床耐药的严重问题。

方法

用微量肉汤稀释法和MTT法检测大黄素对C. neoformans的最小抑菌浓度(minimum inhibitory concentration,MIC),并检测大黄素诱导后C. neoformans的活性氧(reactive oxygen species,ROS)和线粒体膜电位的变化,qPCR检测SDH mRNA的表达,用表面等离子共振方法检测大黄素与SDH的相互作用。

结果

大黄素无明显的抑制C. neoformans作用,MIC>256 μg/ml,但1~4 μg/ml的大黄素可以促进C. neoformans的SDH活性升高,1 μg/ml时ROS升高和SDH的mRNA表达也明显增强,大黄素与SDH可发生特异性结合。

结论

大黄素具有促进C. neoformans的SDH活性升高、增强ROS作用的新生物学功能。

Objective

To explore the effects of emodin on succinate dehydrogenase (SDH) activity and oxidation in Cryptococcus neoformans (C. neoformans) and elaborate the new biological function of emodin, so as to improve the sensitivity of antibacterial drugs targeting SDH and alleviate the serious problem of drug resistance.

Methods

The minimal inhibitory concentration of emodin against C. neoformans was detected by broth microdilution and MTT assay, and the changes of reactive oxygen species (ROS) and mitochondrial membrane potential of C. neoformans treated with emodin were detected. The expression of SDH mRNA was detected by qPCR, and the interaction between emodin and SDH was detected by surface plasmon resonance.

Results

Emodin had no obvious inhibitory effects on C. neoformans, with an MIC>256 μg/ml, but emodin at a concentration of 1~4 μg/ml was able to promote the SDH activity of C. neoformans. At 1 μg/ml, emodin significantly increased the ROS and SDH mRNA expression. Emodin can bind with SDH specifically.

Conclusion

Emodin can promote the SDH activity and enhance ROS production in C. neoformans, which represents the new biological function of emodin.

图1 大黄素的分子结构式
表1 引物列表
表2 大黄素对C. neoformans的MIC
图2 大黄素对C. neoformans的活力。MA为50 mM丙二酸,丙二酸作为底物竞争抑制剂抑制SDH活性。(*P<0.05,**P<0.01)
图3 大黄素处理4 h后C. neoformans的SDH活性(*为P<0.05,****为P<0.001)
图4 大黄素处理后C. neoformans ROS和线粒体膜电位检测,图a为ROS检测荧光显微镜图片;图b为线粒体膜电位检测荧光显微镜图片;图c为ROS相对荧光强度;图d为线粒体膜电位相对荧光强度。(*P<0.05,***P<0.001)
图5 SDH mRNA的表达
图6 大黄素与SDH分子互作
1
勾晓梅, 李雪丽, 隋源, 等. 大黄素对烟曲霉菌性角膜炎模型大鼠的抗炎作用机制研究[J]. 国际眼科杂志, 2019, 19(9): 1466-1469.
2
刘阳, 张昊, 余伟, 等. 大黄素对口腔鳞状细胞癌增殖、侵袭和迁移的影响 [J]. 口腔医学研究, 2021, 37(11): 1042-1047.
3
刘婧怡, 蔡仑, 段浩, 等. 大黄素抑制MRSA生物膜活性及其作用机制研究 [J]. 陆军军医大学学报, 2022, 44(7): 684-690.
4
Hazrat Bilal, MuhammadShafiq, Hou Bing, et al. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis [J]. Virulence, 2022, 13(1): 1573-1589.
5
Yang C, Bian Z, Blechert O, et al. High prevalence of HIV-related cryptococcosis and increased resistance to fluconazole of the cryptococcus neoformans complex in Jiangxi province, south central China [J]. Front Cell Infect Microbiol, 2021, 11: 723251.
6
Rolta R, Kumar V, Sourirajan A, et al. Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens [J]. J Ethnopharmacol, 2020, 257: 112867.
7
周磊, 云宝仪, 汪业菊, 等. 大黄素对金黄色葡萄球菌的抑菌作用机制 [J]. 中国生物化学与分子生物学报, 2011, 27(12): 1156-1160.
8
Alhadrami HA, Abdulaal WH, Hassan HM, et al. In silico-based discovery of natural anthraquinones with potential against multidrug-resistant E. coli [J]. Pharmaceuticals (Basel), 2022, 15(1): 86.
9
Ma W, Zhang M, Cui Z, et al. Aloe-emodin-mediated antimicrobial photodynamic therapy against dermatophytosis caused by Trichophyton rubrum [J]. Microb Biotechnol, 2022, 15(2): 499-512.
10
Ueno K, Otani Y, Yanagihara N, et al. Cryptococcus gattii evades CD11b-mediated fungal recognition by coating itself with capsular polysaccharides [J]. Eur J Immunol, 2021, 51(9): 2281-2295.
11
Freitas GJC, Santos DA. Cryptococcus gattii polysaccharide capsule: An insight on fungal-host interactions and vaccine studies [J]. Eur J Immunol, 2021, 51(9): 2206-2209.
12
张晶, 林晨, 岑颖洲, 等. MTT法在抗真菌药敏实验中的应用 [J]. 暨南大学学报(自然科学与医学版), 2003(6): 36-40.
13
Wang Z, Chen L, Huang Y, et al. Pharmaceutical targeting of succinate dehydrogenase in fibroblasts controls bleomycin-induced lung fibrosis [J]. Redox Biol, 2021, 46: 102082.
14
Ding JL, Li XH, Lei JH, et al. Succinate dehydrogenase subunit C contributes to mycelial growth and development, stress response, and virulence in the insect parasitic fungus beauveria bassiana [J]. Microbiol Spectr, 2022, 10(5): e0289122.
15
Zhang M, Cheng Y, Zhai Y, et al. Attenuated succinate accumulation relieves neuronal injury induced by hypoxia in neonatal mice [J]. Cell Death Discov, 2022, 8(1): 138.
16
Sun Y, Li J, Xu Z, et al. Chidamide, a novel histone deacetylase inhibitor, inhibits multiple myeloma cells proliferation through succinate dehydrogenase subunit A [J]. Am J Cancer Res, 2019, 9(3): 574-584.
17
Moosavi B, Zhu XL, Yang WC, et al. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect [J]. Eur J Cell Biol, 2020, 99(1): 151057.
18
Shishodia SK, Shankar J. Proteomic analysis revealed ROS-mediated growth inhibition of Aspergillus terreus by shikonin [J]. J Proteomics, 2020, 224: 103849.
19
Chen C, Cai N, Wan C, et al. Carvacrol delays Phomopsis stem-end rot development in pummelo fruit in relation to maintaining energy status and antioxidant system [J]. Food Chem, 2022, 372: 131239.
20
Fan W, Li B, Du N, et al. Energy metabolism as the target of 3-phenyllactic acid against Rhizopus oryzae [J]. Int J Food Microbiol, 2022, 369: 109606.
21
Ding JL, Li XH, Lei JH, et al. Succinate dehydrogenase subunit C contributes to mycelial growth and development, stress response, and virulence in the insect parasitic fungus beauveria bassiana [J]. Microbiol Spectr, 10(5): e0289122.
22
Rolta R, Kumar V, Sourirajan A, et al. Bioassay guided fractionation of rhizome extract of Rheum emodi wall as bio-availability enhancer of antibiotics against bacterial and fungal pathogens [J]. J Ethnopharmacol, 2020, 257: 112867.
23
高峰, 周培根, 余鹏. 黄芩素、小檗碱、大黄酸、大黄素与阿莫西林联合抗幽门螺杆菌的药敏实验研究 [J]. 四川中医, 2017, 35(10): 141-144.
24
刘芳. 大黄素联合美罗培南、阿米卡星对多重耐药铜绿假单胞菌的体外抑制作用 [D].中南大学, 2012.
[1] 祖聪, 秦光远, 郑新宇. 大黄素联合survivin短发夹RNA对人乳腺癌细胞株MCF-7增殖的影响[J]. 中华乳腺病杂志(电子版), 2019, 13(03): 137-144.
[2] 葛晓林, 谭思源, 张永祥, 张卫红, 刘波. 新生隐球菌感染现状与相关抗菌药物使用[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(04): 376-380.
[3] 李东霞, 黄丽华, 叶伟, 钱相君, 张磊. 大黄素通过miR-429/SOX2轴调控肝癌细胞增殖、迁移和侵袭[J]. 中华普通外科学文献(电子版), 2021, 15(06): 406-412.
[4] 杨豪俊, 吕凌, 王学浩. 大蒜素联合维生素C、维生素B6对小鼠非酒精性脂肪性肝病的防治作用[J]. 中华肝脏外科手术学电子杂志, 2014, 03(01): 46-51.
[5] 李燕, 潘小平, 王海霞, 仝东蒙, 王琛, 朱丽达. 大黄素甲醚调节miR-370诱导肝癌细胞凋亡的实验研究[J]. 中华介入放射学电子杂志, 2018, 06(02): 148-153.
阅读次数
全文


摘要