切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 569 -574. doi: 10.3877/cma.j.issn.1674-0785.2023.05.012

基础研究

瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用
杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云()   
  1. 650031 云南昆明,昆明医科大学第一附属医院内分泌科
  • 收稿日期:2022-03-15 出版日期:2023-05-15
  • 通信作者: 付景云
  • 基金资助:
    国家自然科学基金项目(81860265); 云南省高层次卫生技术人才学科带头人专项基金项目(D-2018035)

Leptin modulates α1-adrenergic receptor-mediated CaMKK-AMPKα signaling in GT1-7 cells

Siyu Yang, Jingjing Yang, Ping Zhang, Qiao Liu, Jie Wu, Xiangjin Huang, Yijie Wang, Jingyun Fu()   

  1. Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
  • Received:2022-03-15 Published:2023-05-15
  • Corresponding author: Jingyun Fu
引用本文:

杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.

Siyu Yang, Jingjing Yang, Ping Zhang, Qiao Liu, Jie Wu, Xiangjin Huang, Yijie Wang, Jingyun Fu. Leptin modulates α1-adrenergic receptor-mediated CaMKK-AMPKα signaling in GT1-7 cells[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(05): 569-574.

目的

研究瘦素在仓鼠下丘脑GT1-7细胞系中的作用,通过转染α1-肾上腺素受体影响细胞内钙离子浓度而调节CaMKKβ-AMPKα信号通路。

方法

以仓鼠下丘脑GT1-7细胞株进行细胞培养,用脂质体转染α1-肾上腺素作为受体质粒。细胞在无血清培养基中饥饿过夜后呈指数增长,用不同浓度梯度的瘦素刺激细胞以评估细胞内钙离子浓度:GT1-7细胞系在96孔黑底细胞培养板中用DME/F12培养,每隔一天更换一次无血清的DME/F12,37 ℃培养2 h。用不同浓度梯度瘦素刺激细胞,并用fluo-4(Invitrogen)检测细胞内钙离子浓度变化。同时,未转染的GT1-7细胞用作阴性对照。RT-PCR法检测GT1-7-myc-α1-AR细胞CaMKKβ和AMPKα的mRNA水平,Westernblot法检测GT1-7-myc-α1-AR细胞CaMKKβ和AMPKα的蛋白表达。

结果

瘦素通过α1肾上腺素能受体(α1-adrenoceptor,α1-AR)刺激下丘脑GT1-7细胞内钙离子浓度的变化,从而调节CaMKKβ-AMPKα信号的通路活性。

结论

瘦素作用α1肾上腺素受体,介导交感神经系统G蛋白偶联,通过激活Ca2+通道,引起GT1-7-α1-AR细胞[Ca2+]i内流,作为钙依赖蛋白CaMKKβ在下丘脑细胞中调节细胞的代谢,随细胞内Ca2+浓度的增加来激活AMPKα,促进下丘脑促性腺激素释放激素GT1-7细胞的能量代谢。

Objective

To investigate the leptin regulated CaMKKβ-AMPKα signaling pathway by transfection of α1-adrenergic receptor into hamster hypothalamus GT1-7 cells.

Methods

Hamster hypothalamus cell line GT1-7 was cultured, and then α1-adrenaline receptor plasmid (myc-α1-AR) was transfected into the cells with liposomes. The cells grew exponentially after being starved overnight in serum-free medium and then stimulated with leptin at different concentration gradients to assess intracellular calcium concentration as follows: GT1-7 cells were cultured with DME/F12 in a 96-well black-bottom cell culture plate, and serum-free DME/F12 was replaced every other day at 37 ℃ for 2 hours. The cells were stimulated with different concentrations of leptin and the intracellular calcium concentration was measured with Fluo-4. Untransfected GT1-7 cells were used as a negative control. The mRNA levels of CaMKKβ and AMPKα in GT1-7-myc-α1-AR cells were detected by RT-PCR and the protein expression of CaMKKβ and AMPKα was detected by Western blot.

Results

Leptin stimulated the change of calcium concentration in GT1-7 cells through α1-adrenoceptor, thus regulating the activity of the CaMKKβ-AMPKα signaling pathway.

Conclusion

Leptin acts on α1-adrenergic receptor, mediates G protein coupling in the sympathetic nervous system, and causes [Ca2+]i influx in GT1-7-α1-AR cells by activating Ca2+ channels. As a calcium-dependent protein, CaMKKβ regulates cell metabolism in hypothalamic cells, activates AMPKα with the increase of intracellular Ca2+ concentration, and promotes energy metabolism mediated by hypothalamic gonadotropin-releasing hormone in GT1-7 cells.

表1 寡核苷酸引物序列
图1 瘦素(Leptin)在GT1-7-α1-AR细胞中诱导细胞内钙反应
图2 GT1-7-α1-AR细胞中瘦素(Leptin)诱导的CaMKKβ激活
图3 GT1-7-α1-AR细胞中瘦素(Leptin)诱导的AMPKα激活。
图4 GT1-7-α1-AR细胞中CaMKKβ和AMPKα亚基的蛋白表达 不同实验分组及处理下的CaMKKβ和AMPKα亚基的蛋白测定;增加Leptin浓度(0.01、0.05、0.25、1.25、6.25 ng/ml)对GT1-7-α1-AR细胞中AMPKα 和CaMKKβ磷酸化水平的影响。
1
Ahima RS, Saper CB, Flier JS, et al. Leptin regulation of neuroendocrine systems [J]. Front Neuroendocrinol, 2000, 21(3): 263-307.
2
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation [J]. Comp Biochem Physiol B Biochem Mol Biol, 2022, 257: 110652.
3
Fischer AW, Cannon B, Nedergaard J. Leptin: Is It Thermogenic? [J]. Endocr Rev, 2020, 41(2): 232-260.
4
Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility [J]. Cell Mol Life Sci, 2013, 70(5): 841-862.
5
Hall JE, Hildebrandt DA, Kuo J. Obesity hypertension: role of leptin and sympathetic nervous system [J]. Am J Hypertens, 2001, 14(6 Pt 2): 103S-115S.
6
Shi T, Papay RS, Perez DM. The role of α1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation [J]. J Recept Signal Transduct Res, 2017, 37(2): 124-132.
7
Collette KM, Zhou XD, Amoth HM, et al. Long-term α1B-adrenergic receptor activation shortens lifespan, while α1A-adrenergic receptor stimulation prolongs lifespan in association with decreased cancer incidence [J]. Age (Dordr), 2014, 36(4): 9675.
8
Franssen D, Tena-Sempere M. The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis [J]. Best Pract Res Clin Endocrinol Metab, 2018, 32(2): 107-123.
9
Banks WA. Enhanced leptin transport across the blood-brain barrier by alpha 1-adrenergic agents [J]. Brain Res, 2001, 899(1-2): 209-217.
10
Vinet J, Carra S, Blom JM, et al. Cloning of mouse Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKbeta) and characterization of CaMKKbeta and CaMKKalpha distribution in the adult mouse brain [J]. Brain Res Mol Brain Res, 2003, 111(1-2): 216-221.
11
Racioppi L, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology [J]. J Biol Chem, 2012, 287(38): 31658-31665.
12
Anderson KA, Ribar TJ, Lin F, et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance [J]. Cell Metab, 2008, 7(5): 377-388.
13
Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells [J]. Cell Metab, 2005, 2(1): 21-33.
14
Fu J, Qu X, Zhong J, et al. The positive effect of metformin on reproduction is through its action on AMPK in GT1-7 cells to regulate KISS1R, and GNRH1 expression [C]//BIBE, 2019; The Third International Conference on Biological Information and Biomedical Engineering, VDE, 2019: 1-4.
15
Coyral-Castel S, Tosca L, Ferreira G, et al. The effect of AMP-activated kinase activation on gonadotrophin-releasing hormone secretion in GT1-7 cells and its potential role in hypothalamic regulation of the oestrous cyclicity in rats [J]. J Neuroendocrinol, 2008, 20(3): 335-346.
[1] 魏金丽, 邵志敏. 乳腺癌相关的脂肪细胞[J]. 中华乳腺病杂志(电子版), 2019, 13(06): 321-325.
[2] 唐梅, 杨凡. 母乳喂养与儿童单纯性肥胖的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 269-274.
[3] 李小芳, 李秀莹, 林辉瑞, 李荔. 多囊卵巢综合征相关子宫内膜增生病变的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(04): 470-476.
[4] 刘婷婷, 张淑香, 高维萍. 血清瘦素和胰岛素生长因子Ⅱ与子宫内膜癌的相关性研究[J]. 中华妇幼临床医学杂志(电子版), 2013, 09(05): 650-652.
[5] 王化丽, 姜盟. 子宫内膜异位症患者体重指数与血清瘦素水平的关系[J]. 中华妇幼临床医学杂志(电子版), 2012, 08(05): 623-625.
[6] 姚恒, 效小莉. 瘦素在宫颈病变中的表达和意义[J]. 中华妇幼临床医学杂志(电子版), 2012, 08(04): 464-467.
[7] 张冬雪, 朱慧莉, 黄薇, 张强, 郭春, 刘冬, 黄燕, 袁琦. 瘦素和瘦素受体在子宫内膜异位症患者在位内膜和异位内膜的表达[J]. 中华妇幼临床医学杂志(电子版), 2011, 07(04): 313-317.
[8] 郎琼, 刘长云, 陈雪, 李梅, 丁文玲, 吴春友. 瘦素抵抗与载脂蛋白E基因多态性对儿童血脂的影响[J]. 中华妇幼临床医学杂志(电子版), 2011, 07(01): 9-12.
[9] 黄巍, 范蓉, 冯春泉, 陈宇, 吴爱民, 覃菁, 林寒梅. 妊娠期高血压疾病患者尿瘦素水平的测定与分析[J]. 中华妇幼临床医学杂志(电子版), 2009, 05(05): 477-480.
[10] 巨霞, 成要平. 血清瘦素、血脂水平与妊娠期高血压疾病的关系[J]. 中华妇幼临床医学杂志(电子版), 2009, 05(03): 263-266.
[11] 翟娜, 刘正娟, 张旭, 王朝晖, 王彦, 吕鹏. 高脂喂养肥胖大鼠下丘脑及肝脏内细胞因子信号转导抑制物-3 mRNA表达的研究[J]. 中华妇幼临床医学杂志(电子版), 2008, 04(03): 181-185.
[12] 郭松, 陈强谱. 瘦素与肠黏膜屏障[J]. 中华普通外科学文献(电子版), 2014, 08(03): 232-236.
[13] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[14] 王璐, 黄薇薇, 王守红, 朱永蒙. 瘦素对人精子冻融后的保护作用[J]. 中华临床医师杂志(电子版), 2020, 14(02): 81-85.
[15] 王静华, 崔耀辉, 侯云霞, 韩琼, 张倩. 基于瘦素抵抗的针灸预处理对单纯性肥胖症的作用机制思路探讨[J]. 中华肥胖与代谢病电子杂志, 2017, 03(04): 234-236.
阅读次数
全文


摘要