切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2020, Vol. 14 ›› Issue (02) : 81 -85. doi: 10.3877/cma.j.issn.1674-0785.2020.02.001

所属专题: 文献

临床研究

瘦素对人精子冻融后的保护作用
王璐1, 黄薇薇1, 王守红1, 朱永蒙1,()   
  1. 1. 014010 包头,内蒙古医科大学第三附属医院妇产科生殖医学中心
  • 收稿日期:2019-03-04 出版日期:2020-02-15
  • 通信作者: 朱永蒙
  • 基金资助:
    包头市医药卫生基金项目(2017S2001-1-02)

Protective effect of leptin on human sperm after cryopreservation

Lu Wang1, Weiwei Huang1, Shouhong Wang1, Yongmeng Zhu1,()   

  1. 1. Department of Obstetrics and Gynecology, Reproductive Medicine Center, the Third Affiliated Hospital of Inner Mongolia Medical University, Baotou 014010, China
  • Received:2019-03-04 Published:2020-02-15
  • Corresponding author: Yongmeng Zhu
  • About author:
    Corresponding author: Zhu Yongmeng, Email:
引用本文:

王璐, 黄薇薇, 王守红, 朱永蒙. 瘦素对人精子冻融后的保护作用[J]. 中华临床医师杂志(电子版), 2020, 14(02): 81-85.

Lu Wang, Weiwei Huang, Shouhong Wang, Yongmeng Zhu. Protective effect of leptin on human sperm after cryopreservation[J]. Chinese Journal of Clinicians(Electronic Edition), 2020, 14(02): 81-85.

目的

通过在人精子冷冻保护液中添加瘦素,探讨瘦素对冻融后精子质量和功能的作用。

方法

收集2017年1月至12月内蒙古医科大学第三附属医院生殖医学中心就诊患者的精液。前向运动精子比率≥32%且精子浓度≥15×106/ml为正常组,前向运动精子比率<32%且精子浓度<15×106/ml为少弱精组,2组标本各30例。液化后的精液样本分别与含有瘦素的冷冻保护液和不含有瘦素的冷冻保护液混匀。冷冻解冻复苏前后,进行精子活力、存活率以及DNA碎片指数(DFI)的检测,除此以外,检测精子的丙二醛含量及活性氧水平,采用单因素方差分析分析精子的活力、存活率、DFI、丙二醛含量和活性氧水平的差异,组间两两比较采用LSD-t检验。

结果

当添加浓度为10 ng/ml的瘦素后,精子冷冻复苏后总活力最高,达到(53.7±1.5)%。正常组精子在冻融后与新鲜精子相比总活力[(41.5±6.9)% vs (69.9±6.3)%]、存活率[(51.8±4.3)% vs (74.7±3.7)%]均显著下降、DFI[(12.9±3.4)% vs (10.3±3.8)%]上升,活性氧水平[(18.3±1.9)荧光强度vs(7.6±2.6)荧光强度]和丙二醛含量[(5.5±0.8)nmol/108个精子vs(2.6±0.3)nmol/108个精子]均显著上升,差异均具有统计学意义(t=15.7、22.0、2.9、18.2、19.1,P<0.001、<0.001、=0.006、<0.001、<0.001)。少弱精组精子在冻融后与新鲜精子相比总活力[(17.9±2.9)% vs (33.4±5.5)%]、存活率[(39.5±4.4)% vs (57.4±6.2)%]均显著下降、DFI[(35.2±3.6)% vs (21.3±4.1)%]显著上升,活性氧[(64.9±2.9)荧光强度vs(28.3±3.5)荧光强度]和丙二醛[(33.6±2.0)nmol/108个精子 vs (12.1±2.3)nmol/108个精子]均显著上升,差异均具有统计学意义(t=13.6、12.9、13.9、44.4、38.7,P均<0.001)。当添加瘦素后,正常组精子在冷冻解冻后,与对照组相比总活力[(54.7±5.9)% vs (41.5±6.9)%]、存活率[(66.3±3.4)% vs (51.8±4.3)%]均显著上升,活性氧[(10.6±2.1)荧光强度vs(18.3±1.9)荧光强度]和丙二醛[(3.4±0.5)nmol/108个精子 vs (5.5±0.8)nmol/108个精子]显著下降,差异均具有统计学意义(t=7.9、14.4、15.1、12.8,P均<0.001),但DFI比较,组间差异无统计学意义(P>0.05)。少弱精组精子在冷冻解冻后,与对照组相比总活力[(24.8±2.0)% vs (17.9±2.9)%]、存活率[(49.5±3.8)% vs (39.5±4.4)%]均显著上升,DFI[(26.7±2.7)% vs (35.2±3.6)%]、活性氧[(37.9±4.2)荧光强度 vs (64.9±2.9)荧光强度]和丙二醛[(23.1±1.7)nmol/108个精子 vs (33.6±2.0)nmol/108个精子]均显著下降,差异均具有统计学意义(t=10.5、9.4、10.2、28.5、21.9,P均<0.001)。

结论

添加瘦素能有效得减少精子因低温贮藏导致的活力与存活率的下降、DNA碎片及氧化损伤,从而改善精子质量和功能。

Objective

To investigate the effect of leptin on the quality and function of sperm after freezing and thawing by adding leptin to human sperm cryoprotective solution.

Methods

Semen samples were collected at the Reproductive Medicine Center of the Third Affiliated Hospital of Inner Mongolia Medical University from January to December 2017. Samples with a progressive sperm ratio≥32% and sperm concentration ≥15×106/ml were included in a normal group, while those with a progressive sperm ratio<32% and sperm concentration <15×106/ml were included in an asthenozoospermia (AS) group. The liquefied semen samples were mixed with cryopreserved solution with and without leptin. Vitality rate, motility rate, and DNA fragmentation index (DFI) were measured. Malondialdehyde content and reactive oxygen level in sperm were detected. Comparisons among groups were analyzed by single factor analysis of variance, and comparisons between groups were performed by the LSD-t test.

Results

When leptin was added at a concentration of 10 ng/ml, the total vitality of sperm after cryo-resuscitation was the highest, reaching (53.7±1.5)%. Compared with fresh sperm, the total vitality rate [(41.5±6.9)% vs (69.9±6.3)%, t=15.7, P<0.001] and motility rate [(51.8±4.3)% vs (74.7±3.7)%, t=22.0, P<0.001] of sperm after freezing and thawing in the normal group decreased significantly, while DFI [(12.9±3.4)% vs (10.3±3.8)%, t=2.9, P=0.006], reactive oxygen species (fluorescence intensity, 18.3±1.9 vs 7.6±2.6, t=18.2, P<0.001), and malondialdehyde (nmol/108 sperm, 5.5±0.8 vs 2.6±0.3, t=19.1, P<0.001) all increased significantly. Compared with fresh sperm, the total vitality rate [(17.9±2.9)% vs (33.4±5.5)%, t=13.6, P<0.001] and motility rate [(39.5±4.4)% vs (57.4±6.2)%, t=12.9, P<0.001] decreased significantly in the AS group, while DFI [(35.2±3.6)% vs (21.3±4.1)%, t=13.9, P<0.001], reactive oxygen species (fluorescence intensity, 64.9±2.9 vs 28.3±3.5, t=44.4, P<0.001), and malondialdehyde (nmol/108 sperm, 33.6±2.0 vs 12.1±2.3, t=38.7, P<0.001) all increased significantly. When leptin was added, compared with the control group, the total vitality rate [(54.7±5.9)% vs (41.5±6.9)%, t=7.9, P<0.001] and motility rate[(66.3±3.4)% vs (51.8±4.3)%, t=14.4, P<0.001] of sperm after freezing and thawing in the normal group increased significantly, and reactive oxygen species (fluorescence intensity, 10.6±2.1 vs 18.3±1.9, t=15.1, P<0.001) and malondialdehyde (nmol/108 sperm, 3.4±0.5 vs 5.5±0.8, t=12.8, P<0.001) decreased significantly, although there was no significant difference in DFI between the two groups (P>0.05). After freezing and thawing, compared with the control group, the sperm in the AS group had significantly increased total viability [(24.8±2.0)% vs (17.9±2.9)%, t=10.5, P<0.001] and motility rate[(49.5±3.8)% vs (39.5±4.4)%, t=9.4, P<0.001], and significantly decreased DFI [(49.5±3.8)% vs (39.5±4.4)%, t=10.2, P<0.001], active oxygen (fluorescence intensity, 37.9±4.2 vs 64.9±2.9, t=28.5, P<0.001), and malondialdehyde (nmol/108 sperm, 23.1±1.7 vs 33.6±2.0, t=21.9, P<0.001).

Conclusion

The addition of leptin can effectively reduce sperm motility and viability, DNA fragmentation, and oxidative damage caused by cryopreservation, thereby improving sperm quality and function.

表1 精液冷冻复苏前后精子的活力、存活率、DFI的比较(±s
表2 精液冷冻复苏前后精子活性氧和丙二醛水平的比较(±s
[1]
Petyim S, Neungton C, Thanaboonyawat I, et al. Sperm preparation before freezing improves sperm motility and reduces apoptosis in post-freezing-thawing sperm compared with post-thawing sperm preparation [J]. J Assist Reprod Genet, 2014, 31(12): 1673-1680.
[2]
Sieme H, Oldenhof H, Wolkers WF. Sperm Membrane Behaviour during Cooling and Cryopreservation [J]. Reprod Domest Anim, 2015, 50, Suppl 3: 20-26.
[3]
Yeste M, Estrada E, Rocha LG, et al. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus [J]. Andrology, 2015, 3(2): 395-407.
[4]
Di Santo M, Tarozzi N, Nadalini M, et al. Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART [J]. Adv Urol, 2012, 2012: 854837.
[5]
Cocuzza M, Sikka SC, Athayde KS, et al. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis [J]. Int Braz J Urol, 2007, 33(5): 603-621.
[6]
Helfenstein F, Losdat S, Moller AP, et al. Sperm of colourful males are better protected against oxidative stress [J]. Ecol Lett, 2010, 13(2): 213-222.
[7]
Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis [J]. Fertil Steril, 2010, 93(4): 1027-1036.
[8]
Niederberger C. Re: whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after In vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis [J]. J Urol, 2015, 194(1): 170.
[9]
Zhang W, Li F, Cao H, et al. Protective effects of l-carnitine on astheno- and normozoospermic human semen samples during cryopreservation [J]. Zygote, 2016, 24(2): 293-300.
[10]
Mata-Campuzano M, Alvarez-Rodriguez M, Alvarez M, et al. Post-thawing quality and incubation resilience of cryopreserved ram spermatozoa are affected by antioxidant supplementation and choice of extender [J]. Theriogenology, 2015, 83(4): 520-528.
[11]
Garcia-Galiano D, Allen SJ, Elias CF. Role of the adipocyte-derived hormone leptin in reproductive control [J]. Horm Mol Biol Clin Investig, 2014, 19(3): 141-149.
[12]
Li HW, Chiu PC, Cheung MP, et al. Effect of leptin on motility, capacitation and acrosome reaction of human spermatozoa [J]. IntJ Androl, 2009, 32(6): 687-694.
[13]
Jope T, Lammert A, Kratzsch J, et al. Leptin and leptin receptor in human seminal plasma and in human spermatozoa [J]. Int J Androl, 2003, 26(6): 335-341.
[14]
Aquila S, Giordano F, Guido C, et al. Nitric oxide involvement in the acrosome reaction triggered by leptin in pig sperm [J]. Reprod Biol Endocrinol, 2011, 9: 133.
[15]
Lampiao F, du Plessis SS. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production [J]. Asian J Androl, 2008, 10(5): 799-807.
[16]
Fernandez JL, Muriel L, Goyanes V, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test [J]. Fertil Steril, 2005, 84(4): 833-842.
[17]
Sharma R, Kattoor AJ, Ghulmiyyah J, et al. Effect of sperm storage and selection techniques on sperm parameters [J]. Syst Biol Reprod Med, 2015, 61(1): 1-12.
[18]
Meamar M, Zribi N, Cambi M, et al. Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica [J]. Fertil Steril, 2012, 98(2): 326-333.
[19]
李志凌,林琼林,刘容菊, 等. 抗氧化剂改善冻融人精子氧化应激性DNA损伤的研究 [J]. 中华医学杂志, 2007, 87(45): 3174-3177.
[20]
董俏言,石慧,李建远. 人类精子冷冻损伤与保护的相关研究 [J]. 中国计划生育学杂志, 2019, 27(9): 1259-1263.
[21]
Aitken RJ, De Iuliis GN, Finnie JM, et al. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria [J]. Hum Reprod, 2010, 25(10): 2415-2426.
[22]
Kalthur G, Adiga SK, Upadhya D, et al. Effect of cryopreservation on sperm DNA integrity in patients with teratospermia [J]. Fertil Steril, 2008, 89(6): 1723-1727.
[23]
Solinas G. Leptin signalling coordinates lipid oxidation with thermogenesis and defence against oxidative stress [J]. Clin Exp Pharmacol Physiol, 2010, 37(10): 953-954.
[1] 周璐, 徐静, 徐琰. 循环肿瘤DNA检测在乳腺癌中的临床应用[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 47-50.
[2] 魏金丽, 邵志敏. 乳腺癌相关的脂肪细胞[J]. 中华乳腺病杂志(电子版), 2019, 13(06): 321-325.
[3] 唐梅, 杨凡. 母乳喂养与儿童单纯性肥胖的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(03): 269-274.
[4] 李小芳, 李秀莹, 林辉瑞, 李荔. 多囊卵巢综合征相关子宫内膜增生病变的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(04): 470-476.
[5] 刘婷婷, 张淑香, 高维萍. 血清瘦素和胰岛素生长因子Ⅱ与子宫内膜癌的相关性研究[J]. 中华妇幼临床医学杂志(电子版), 2013, 09(05): 650-652.
[6] 王化丽, 姜盟. 子宫内膜异位症患者体重指数与血清瘦素水平的关系[J]. 中华妇幼临床医学杂志(电子版), 2012, 08(05): 623-625.
[7] 姚恒, 效小莉. 瘦素在宫颈病变中的表达和意义[J]. 中华妇幼临床医学杂志(电子版), 2012, 08(04): 464-467.
[8] 张冬雪, 朱慧莉, 黄薇, 张强, 郭春, 刘冬, 黄燕, 袁琦. 瘦素和瘦素受体在子宫内膜异位症患者在位内膜和异位内膜的表达[J]. 中华妇幼临床医学杂志(电子版), 2011, 07(04): 313-317.
[9] 郎琼, 刘长云, 陈雪, 李梅, 丁文玲, 吴春友. 瘦素抵抗与载脂蛋白E基因多态性对儿童血脂的影响[J]. 中华妇幼临床医学杂志(电子版), 2011, 07(01): 9-12.
[10] 黄巍, 范蓉, 冯春泉, 陈宇, 吴爱民, 覃菁, 林寒梅. 妊娠期高血压疾病患者尿瘦素水平的测定与分析[J]. 中华妇幼临床医学杂志(电子版), 2009, 05(05): 477-480.
[11] 郭松, 陈强谱. 瘦素与肠黏膜屏障[J]. 中华普通外科学文献(电子版), 2014, 08(03): 232-236.
[12] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
[13] 杨思雨, 杨晶晶, 张平, 刘巧, 吴杰, 黄香金, 王怡洁, 付景云. 瘦素通过α1肾上腺素受体介导CaMKKβ-AMPKα信号通路在GT1-7细胞系中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 569-574.
[14] 孙凤兰, 周萍, 程兴璞, 张倩倩. 腹腔镜全子宫切除术对子宫肌瘤患者机体氧化应激损伤及术后并发症的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 149-153.
[15] 王静华, 崔耀辉, 侯云霞, 韩琼, 张倩. 基于瘦素抵抗的针灸预处理对单纯性肥胖症的作用机制思路探讨[J]. 中华肥胖与代谢病电子杂志, 2017, 03(04): 234-236.
阅读次数
全文


摘要