切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (07) : 828 -833. doi: 10.3877/cma.j.issn.1674-0785.2023.07.012

综述

肠道微生物群对代谢相关脂肪性肝病发展的影响
张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎()   
  1. 571199 海口,海南医学院研究生院
    570216 海口,海南医学院第二附属医院消化内科;570216 海口,海南省消化疾病临床研究中心
  • 收稿日期:2023-01-17 出版日期:2023-07-15
  • 通信作者: 白飞虎
  • 基金资助:
    海南省临床医学中心建设项目资助(2021818); 海南省院士团队创新中心建设项目资助(2022136); 海南省院士创新平台科研项目资金资助(YSPTZX202313); 海南省卫生健康行业科研项目资助(22A200078); 海南省研究生创新科研课题(Qhyb2022-133); 海南医学院研究生创新科研课题(HYYB2022A18)

Role of intestinal microecological dysregulation in development of metabolic-associated fatty liver disease

Daya Zhang, Shiju Chen, Runxiang Chen, Xiaodong Zhang, Da Li, Feihu Bai()   

  1. Graduate School, Hainan Medical University, Haikou 571199, China
    Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China; The Gastroenterology Clinical Medical Center of Hainan Province, Haikou 570216, China
  • Received:2023-01-17 Published:2023-07-15
  • Corresponding author: Feihu Bai
引用本文:

张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.

Daya Zhang, Shiju Chen, Runxiang Chen, Xiaodong Zhang, Da Li, Feihu Bai. Role of intestinal microecological dysregulation in development of metabolic-associated fatty liver disease[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(07): 828-833.

代谢相关脂肪性肝病(MAFLD)是一种严重威胁公众健康的疾病,其发病机制尚不清楚。肠道微生物群及其代谢产物对MAFLD的发展有重要影响。在这篇综述中,笔者主要强调肠道微生物群及其代谢产物影响MAFLD的关键机制,并阐述了通过益生菌、益生元、合生元和粪菌移植(FMT)调节肠道微生物群来治疗MAFLD的研究。

Metabolic-associated fatty liver disease (MAFLD) is a serious public health threat and its pathogenesis is still not completely clear. Studies have shown that the intestinal microbiota and its metabolites have an important role in the development of MAFLD. In this review, we focus on the key mechanisms by which the intestinal microbiota and its metabolites influence MAFLD. In addition, we also discuss the treatment of MAFLD by modulating the intestinal microbiota through probiotics, prebiotics, synbiotics, and fecal microbiota transplantation.

1
Eslam M, Sanyal AJ, George J. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease [J]. Gastroenterology, 2020, 158(7): 1999-2014. e1.
2
Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement [J]. J Hepatol, 2020, 73(1): 202-209.
3
Nan Y, An J, Bao J, et al. The Chinese society of hepatology position statement on the redefinition of fatty liver disease [J]. J Hepatol, 2021, 75(2): 454-461.
4
Wang X, Wu S, Yuan X, et al. Metabolic dysfunction-associated fatty liver disease and mortality among Chinese adults: a prospective cohort study [J]. J Clin Endocrinol Metab, 2022, 107(2): e745-e755.
5
Wang QX, Xue J, Shi MJ, et al. Association between metabolic dysfunction-associated fatty liver disease and the risk of cirrhosis in patients with chronic hepatitis B-A retrospective cohort study [J]. Diabetes Metab Syndr Obes, 2022, 15: 2311-2322.
6
Lim GEH, Tang A, Ng CH, et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD [J]. Clin Gastroenterol Hepatol, 2023, 21(3): 619-629. e7.
7
Ayada I, van Kleef LA, Alferink LJM, et al. Systematically comparing epidemiological and clinical features of MAFLD and NAFLD by meta-analysis: focusing on the non-overlap groups [J]. Liver Int, 2022, 42: 277-287.
8
Wong VW, Wong GL, Woo J, et al. Impact of the new definition of metabolic associated fatty liver disease on the epidemiology of the disease [J]. Clin Gastroenterol Hepatol, 2021, 19: 2161-2171.
9
Chen YL, Li H, Li S, et al. Prevalence of and risk factors for metabolic associated fatty liver disease in an urban population in China: a cross-sectional comparative study [J]. BMC Gastroenterol, 2021, 21: 212.
10
Huang YP, Zhang S, Zhang M, et al. Gender-specific prevalence of metabolic-associated fatty liver disease among government employees in Tianjin, China: a cross-sectional study [J]. BMJ Open, 2021, 11: e056260.
11
Guan C, Fu S, Zhen D, et al. Metabolic (dysfunction)-associated fatty liver disease in Chinese patients with type 2 diabetes from a subcenter of the national metabolic management center [J]. J Diabetes Res, 2022, 2022: 8429847.
12
Fouad Y, Esmat G, Elwakil R, et al. The egyptian clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease [J]. Saudi J Gastroenterol, 2022, 28(1): 3-20.
13
Shao CX, Ye J, Dong Z, et al. Steatosis grading consistency between controlled attenuation parameter and MRI-PDFF in monitoring metabolic associated fatty liver disease [J]. Ther Adv Chronic Dis, 2021, 12: 20406223211033119.
14
Ye J, Zhuang X, Li X, et al. Novel metabolic classification for extrahepatic complication of metabolic associated fatty liver disease: A data-driven cluster analysis with international validation [J]. Metabolism, 2022, 136: 155294.
15
Yu Q, Wu L, Ji J, et al. Gut Microbiota, peroxisome proliferator-activated receptors, and hepatocellular carcinoma [J]. J Hepatocell Carcinoma, 2020, 7: 271-288.
16
Seo DO, Holtzman DM. Gut microbiota: from the forgotten organ to a potential key player in the pathology of Alzheimer's disease [J]. J Gerontol A Biol Sci Med Sci, 2020, 75(7): 1232-1241.
17
Wu J, Wang K, Wang X, et al. The role of the gut microbiome and its metabolites in metabolic diseases [J]. Protein Cell, 2021, 12(5): 360-373.
18
Chen J, Vitetta L. Gut Microbiota metabolites in NAFLD pathogenesis and therapeutic implications [J]. Int J Mol Sci, 2020, 21(15): 5214.
19
Vallianou N, Christodoulatos GS, Karampela I, et al. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: current evidence and perspectives [J]. Biomolecules, 2021, 12(1): 56.
20
Yang L, Dai Y, He H, et al. Integrative analysis of gut microbiota and fecal metabolites in metabolic associated fatty liver disease patients [J]. Front Microbiol, 2022, 13: 969757.
21
Riordan SM, Duncombe VM, Thomas MC, et al. Small intestinal bacterial overgrowth, intestinal permeability, and non-alcoholic steatohepatitis [J]. Gut, 2002, 50(1): 136-138.
22
Zhu L, Baker SS, Gill C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH [J]. Hepatology, 2013, 57(2): 601-609.
23
Raman M, Ahmed I, Gillevet PM, et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease [J]. Clin Gastroenterol Hepatol, 2013, 11(7): 868-875.e1-3.
24
Da Silva HE, Teterina A, Comelli EM, et al. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance [J]. Sci Rep, 2018, 8(1): 1466.
25
Wang B, Jiang X, Cao M, et al. Altered Fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease [J]. Sci Rep, 2016, 6: 32002.
26
Schwimmer JB, Johnson JS, Angeles JE, et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease [J]. Gastroenterology, 2019, 157(4): 1109-1122.
27
Li F, Ye J, Shao C, Zhong B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis [J]. Lipids Health Dis, 2021, 20(1): 22.
28
Loomba R, Seguritan V, Li W, et al. Gut microbiome-based metagenomic signature for mon-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease [J]. Cell Metab, 2019, 30(3): 607.
29
Michail S, Lin M, Frey MR, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease [J]. FEMS Microbiol Ecol, 2015, 91(2): 1-9.
30
Li NN, Li W, Feng JX, et al. High alcohol-producing Klebsiella pneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo [J]. Gut Microbes, 2021, 13(1): 1979883.
31
Schroeder BO, Birchenough G, Ståhlman M, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration [J]. Cell Host Microbe, 2018, 23(1): 27-40. e7.
32
Jia W, Rajani C. The influence of gut microbial metabolism on the development and progression of non-alcoholic fatty liver disease [J]. Adv Exp Med Biol, 2018, 1061: 95-110.
33
Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability [J]. Cell Mol Gastroenterol Hepatol, 2015, 1(2): 222-232.
34
Zhang Z, Zhang H, Chen T, et al. Regulatory role of short-chain fatty acids in inflammatory bowel disease [J]. Cell Commun Signal, 2022, 20(1): 64.
35
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy [J]. J Hepatol, 2020, 72(3): 558-577.
36
Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome [J]. Nutrients, 2020, 12(4): 1107.
37
Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions [J]. Science, 2012, 336(6086): 1262-1267.
38
Liu W, Luo X, Tang J, et al. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier [J]. Eur J Nutr, 2021, 60(5): 2317-2330.
39
Zhang S, Zhao J, Xie F, et al. Dietary fiber-derived short-chain fatty acids: A potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease [J]. Obes Rev, 2021, 22(11): e13316.
40
Deng M, Qu F, Chen L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD [J]. J Endocrinol, 2020, 245(3): 425-437.
41
Kolodziejczyk AA, Zheng D, Shibolet O, et al. The role of the microbiome in NAFLD and NASH [J]. EMBO Mol Med, 2019, 11(2): e9302.
42
Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells [J]. Nat Immunol, 2016, 17(6): 618-625.
43
Godlewska U, Bulanda E, Wypych TP. Bile acids in immunity: bidirectional mediators between the host and the microbiota [J]. Front Immunol, 2022, 13: 949033.
44
Li T, Chiang J. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease [J]. Hepatobiliary Surg Nutr, 2020, 9(2): 152-169.
45
Li Y, Chen H, Ke Z, et al. Identification of isotschimgine as a novel farnesoid X receptor agonist with potency for the treatment of obesity in mice [J]. Biochem Biophys Res Commun, 2020, 521(3): 639-645.
46
Gillard J, Clerbaux LA, Nachit M, et al. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice [J]. JHEP Rep, 2022, 4(1): 100387.
47
Rivera-Andrade A, Petrick JL, Alvarez CS, et al. Circulating bile acid concentrations and non-alcoholic fatty liver disease in Guatemala [J]. Aliment Pharmacol Ther, 2022, 56(2): 321-329.
48
Puri P, Daita K, Joyce A, et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids [J]. Hepatology, 2018, 67: 534-548.
49
Ni Y, Lu M, Xu Y, et al. The role of gut microbiota-bile acids axis in the progression of non-alcoholic fatty liver disease [J]. Front Microbiol, 2022, 13: 908011.
50
Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota [J]. Gut Microbes, 2020, 11(2): 158-171.
51
Jadhav K, Xu Y, Xu Y, et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR [J]. Mol Metab, 2018, 9: 131-140.
52
Siddiqui MS, Van Natta ML, Connelly MA, et al. Impact of obeticholic acid on the lipoprotein profile in patients with non-alcoholic steatohepatitis [J]. J Hepatol, 2020, 72(1): 25-33.
53
Arias N, Arboleya S, Allison J, et al. The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases [J]. Nutrients, 2020, 12: 2340.
54
Ji Y, Yin Y, Sun L, et al. The molecular and mechanistic insights based on gut-liver axis: nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement [J]. Int J Mol Sci, 2020, 21(9): 3066.
55
Tan X, Liu Y, Long J, et al. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease [J]. Mol Nutr Food Res, 2019, 63(17): e1900257.
56
Yang S, Li X, Yang F, et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target [J]. Front Pharmacol, 2019, 10: 1360.
57
Hernandez GV, Smith VA, Melnyk M, et al. Dysregulated FXR-FGF19 signaling and choline metabolism are associated with gut dysbiosis and hyperplasia in a novel pig model of pediatric NASH [J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318: G582-G609.
58
Carpino G, Del Ben M, Pastori D, et al. Increased liver Localization of lipopolysaccharides in human and experimental NAFLD [J]. Hepatology, 2020, 72: 470-485.
59
Takeuchi O, Akira S. Pattern recognition receptors and inflammation [J]. Cell, 2010, 140(6): 805-820.
60
Chassaing B, Ley RE, Gewirtz AT. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice [J]. Gastroenterology, 2014, 147(6): 1363-77. e17.
61
Zhu L, Baker RD, Zhu R, et al. Gut microbiota produce alcohol and contribute to NAFLD [J]. Gut, 2016, 65(7): 1232.
62
Yuan J, Chen C, Cui J, et al. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae [J]. Cell Metab, 2019, 30(4): 675-688.e7.
63
Wu L, Mo W, Feng J, et al. Astaxanthin attenuates hepatic damage and mitochondrial dysfunction in non-alcoholic fatty liver disease by up-regulating the FGF21/PGC-1α pathway [J]. Br J Pharmacol, 2020, 177(16): 3760-3777.
64
Trovato FM, Catalano D, Martines GF, et al. Mediterranean diet and non-alcoholic fatty liver disease: the need of extended and comprehensive interventions [J]. Clin Nutr, 2015, 34(1): 86-88.
65
Da Silva HE, Arendt BM, Noureldin SA, et al. A cross-sectional study assessing dietary intake and physical activity in Canadian patients with nonalcoholic fatty liver disease vs healthy controls [J]. J Acad Nutr Diet, 2014, 114(8): 1181-1194.
66
Nielsen LS, Danielsen KV, Sørensen TI. Short sleep duration as a possible cause of obesity: critical analysis of the epidemiological evidence [J]. Obes Rev, 2011, 12(2): 78-92.
67
Brondel L, Romer MA, Nougues PM, et al. Acute partial sleep deprivation increases food intake in healthy men [J]. Am J Clin Nutr, 2010, 91(6): 1550-1559.
68
St George A, Bauman A, Johnston A, et al. Independent effects of physical activity in patients with nonalcoholic fatty liver disease [J]. Hepatology, 2009, 50(1): 68-76.
69
Munukka E, Ahtiainen JP, Puigbó P, et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women [J]. Front Microbiol, 2018, 9: 2323.
70
Sheka AC, Adeyi O, Thompson J, et al. Nonalcoholic steatohepatitis: A review [J]. Jama, 2020, 323(12): 1175-1183.
71
Jiang C, Xie C, Li F, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease [J]. J Clin Invest, 2015, 125(1): 386-402.
72
Abdel-Razik A, Mousa N, Shabana W, et al. Rifaximin in nonal-coholic fatty liver disease: hit multiple targets with a single shot [J]. Eur J Gastroenterol Hepatol, 2018, 30(10): 1237-1246.
73
Jian J, Nie MT, Xiang B, et al. Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids [J]. Front Pharmacol, 2022, 13: 841132.
74
Ebrahimzadeh Leylabadlo H, Ghotaslou R, Samadi Kafil H, et al. Non-alcoholic fatty Liver diseases: from role of gut microbiota to microbial-based therapies [J]. Eur J Clin Microbiol Infect Dis, 2020, 39(4): 613-627.
75
Mohammed SK, Magdy YM, El-Waseef DA, et al. Modulation of hippocampal TLR4/BDNF signal pathway using probiotics is a step closer towards treating cognitive impairment in NASH Model [J]. Physiol Behav, 2020, 214: 112762.
76
Tang Y, Huang J, Zhang WY, et al. Effects of probiotics on nonalco-holic fatty liver disease: a systematic review and meta-analysis [J]. Therap Adv Gastroenterol, 2019, 12: 1756284819878046
77
Bomhof MR, Parnell JA, Ramay HR, et al. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: A pilot clinical trial [J]. Eur J Nutr (2019) 58: 1735-1745.
78
van der Beek CM, Canfora EE, Kip AM, et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men [J]. Metabolism, 2018, 87, 25-35.
79
Kanchanasurakit S, Kositamongkol C, Lanoi K, et al. Effects of synbiotics, probiotics, and prebiotics on liver enzymes of patients with non-alcoholic fatty liver disease: A systematic review and network meta-analysis [J]. Front Nutr, 2022, 9: 880014.
80
Liu L, Li P, Liu Y, Zhang Y. Efficacy of probiotics and synbiotics in patients with nonalcoholic fatty liver disease: a meta-analysis [J]. Dig Dis Sci, 2019, 64(12): 3402-3412.
81
Kelly CR, Yen EF, Grinspan AM, et al. Fecal microbiota transplantation is highly effective in real-world practice: initial results from the FMT national registry [J]. Gastroenterology, 2021, 160: 183-192. e3.
82
de Groot P, Nikolic T, Pellegrini S, et al. Faecal Microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial [J]. Gut, 2021, 70: 92-105.
83
Holvoet T, Joossens M, Vázquez-Castellanos JF, et al. Fecal microbiota transplantation reduces symptoms in some patients with irritable bowel syndrome with predominant abdominal bloating: short- and long-term results from a placebo-controlled randomized trial [J]. Gastroenterology, 2021, 160: 145-157. e8.
84
Witjes JJ, Smits LP, Pekmez CT, et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis [J]. Hepatol Commun, 2020, 4: 1578-1590.
85
Craven L, Rahman A, Nair Parvathy S, et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial [J]. Am J Gastroenterol, 2020, 115: 1055-1065.
[1] 刘婷婷, 林妍冰, 汪珊, 陈幕荣, 唐子鉴, 代东伶, 夏焙. 超声衰减参数成像评价儿童代谢相关脂肪性肝病的价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 787-794.
[2] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[3] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[4] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[5] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[6] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[7] 李娜, 朱国贞. 肠道菌群及其代谢产物在急性肾损伤中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 215-219.
[8] 张紫薇, 卢弘. 脂多糖受体复合体在急性前葡萄膜炎虹膜色素上皮细胞中作用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 167-171.
[9] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[10] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[11] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[12] 廖想, 李爽, 曾瑶. 2012-2021年粪菌移植研究的趋势及热点分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 93-99.
[13] 韩家超, 王飞飞, 柳子宁, 胡冀陶, 孟泽松, 雒月云, 王贵英. 二甲双胍的作用机制研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 349-355.
[14] 杜青瑶, 曹颖雯, 林健雄, 郝润, 王静敏, 徐锐权, 寇晓霞. 肠道菌群促进诺如病毒感染的机制[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 241-244,255.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要