切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (07) : 823 -827. doi: 10.3877/cma.j.issn.1674-0785.2023.07.011

综述

消化系统恶性肿瘤相关肌少症的研究进展
王家圆, 王晓东()   
  1. 100043 北京,北京大学首钢医院肿瘤内科
  • 收稿日期:2023-04-12 出版日期:2023-07-15
  • 通信作者: 王晓东

Progress in research of sarcopenia in digestive system malignant tumors

Jiayuan Wang, Xiaodong Wang()   

  1. Department of Medical Oncology of Peking University Shougang Hospital, Beijing 100043, China
  • Received:2023-04-12 Published:2023-07-15
  • Corresponding author: Xiaodong Wang
引用本文:

王家圆, 王晓东. 消化系统恶性肿瘤相关肌少症的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 823-827.

Jiayuan Wang, Xiaodong Wang. Progress in research of sarcopenia in digestive system malignant tumors[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(07): 823-827.

越来越多的医生认识到肿瘤患者的预后不仅取决于影像分期、病理类型、肿瘤细胞分化程度、分子分型等,还取决于患者自身因素,例如营养状态等。相对于体重指数,对患者肌肉质量、功能的评估可以更全面反映患者的营养状况。既往有多项研究表明肌少症可以影响消化道肿瘤患者的预后以及该病可以对不同治疗模式产生影响。通过运动、营养支持、药物治疗可以逆转这一状态,从而改善患者的预后。

More and more clinicians are realizing that the prognosis of cancer patients depends not only on tumor stage, pathological type, tumor cell differentiation, molecular type, etc., but also on patient factors, such as nutritional status. Compared to body mass index, patient muscle mass and physical function can more comprehensively reflect the patient's nutritional status. Previous studies have shown that sarcopenia can affect the prognosis of patients with gastrointestinal tumors and have an impact on different treatment modes. This state can be reversed through exercise, nutritional support, and medication treatment to improve the prognosis of patients.

1
Arnold M, Abnet CC, Neale RE, et al. Global burden of 5 major types of gastrointestinal cancer [J]. Gastroenterology, 2020, 159(1): 335-349. e15.
2
Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) "cachexia-anorexia in chronic wasting diseases" and "nutrition in geriatrics" [J]. Clin Nutr, 2010, 29: 154-159.
3
Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus [J]. Lancet Oncol, 2011, 12: 489-495.
4
Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecularpathophysiology and impact of exercise training [J]. J Cachexia Sarcopenia Muscle, 2015, 6: 197-207.
5
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on defifinition and diagnosis: report of the European Working Group on Sarcopenia in Older People [J]. Age Ageing, 2010, 39(4): 412-423.
6
Pamoukdjian F, Bouillet T, Levy V, et al. Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review [J]. Clin Nutr, 2018, 37: 1101-1113.
7
van Vugt JLA, Buettner S, Levolger S, et al. Low skeletal muscle mass is associated with increased hospital expenditure in patients undergoing cancer surgery of the alimentary tract [J]. PLoS One, 2017, 12: e0186547.
8
Sergi G, Trevisan C, Veronese N, et al. Imaging of sarcopenia [J]. Eur J Radiol, 2016, 85: 1519-1524.
9
Gomez-Perez SL, Haus JM, Sheean P, et al. Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed tomography image: A step-by-step guide for clinicians using national institutes of health image J [J]. JPEN J Parenter Enteral Nutr, 2016, 40: 308-318.
10
Ní Bhuachalla ÉB, Daly LE, Power DG, et al. Computed tomography diagnosed cachexia and sarcopenia in 725 oncology patients: is nutritional screening capturing hidden malnutrition [J]? J Cachexia Sarcopenia Muscle, 2018, 9(2): 295-305.
11
Jogiat UM, Sasewich H, Turner SR, et al. Sarcopenia determined by skeletal muscle index predicts overall survival, disease-free survival, and postoperative complications in resectable esophageal cancer: A systematic review and meta-analysis [J]. Ann Surg, 2022, 276(5): e311-e318.
12
Mayanagi S, Ishikawa A, Matsui K, Matsuda S, Irino T, Nakamura R, et al. Association of preoperative sarcopenia with postoperative dysphagia in patients with thoracic esophageal cancer [J]. Dis Esophagus, 2021, 34(9): doaa121.
13
Ma BW, Chen XY, Fan SD, et al. Impact of sarcopenia on clinical outcomes after radical gastrectomy for patients without nutritional risk [J]. Nutrition, 2019, 61: 61-66.
14
Kawamura T, Makuuchi R, Tokunaga M, et al. Long-term outcomes of gastric cancer patients with preoperative sarcopenia [J]. Ann Surg Oncol, 2018, 25(6): 1625-1632.
15
Park SE, Hwang IG, Choi CH, et al. Sarcopenia is poor prognostic factor in older patients with locally advanced rectal can-cer who received preoperative or postoperative chemoradiotherapy [J]. Medicine (Balti-more), 2018, 97: e13363.
16
Miyamoto Y, Baba Y, Sakamoto Y, et al. Sarcopenia is a negative prognostic factor after curative resection of colorectal cancer [J]. Ann Surg Oncol, 2015, 22: 2663-2668.
17
Papaconstantinou D, Vretakakou K, Paspala A, et al. The impact of preoperative sarcopenia on postoperative complications following esophagectomy for esophageal neoplasia: a systematic review and metaanalysis [J]. Dis Esophagus, 2020, 33: doaa002.
18
Nishigori T, Okabe H, Tanaka E, et al. Sarcopenia as a predictor of pulmonary complications after esophagectomy for thoracic esophageal cancer [J]. J Surg Oncol, 2016, 113: 678-684.
19
Kurita D, Oguma J, Ishiyama K, et al. Handgrip strength predicts postoperative pneumonia after thoracoscopic-laparoscopic esophagectomy for patients with esophageal cancer [J]. Ann Surg Oncol, 2020, 37: 3173-3181.
20
Huang DD, Wang SL, Zhuang CL, et al. Sarcopenia, as defined by low muscle mass, strength and physical performance, predicts complications after surgery for colorectal cancer [J]. Colorectal Dis, 2015, 17: O256-O264.
21
Peng P, Hyder O, Firoozmand A, et al. Impact of sarcopenia on outcomes following resection of pancreatic adenocarcinoma [J]. J Gastrointest Surg, 2012, 16: 1478-1486.
22
Kodera Y. More than 6 months of postoperative adjuvant chemotherapy results in loss of skeletal muscle: a challenge to the current standard of care [J]. Gastric Cancer, 2015, 18: 203-204.
23
Li YP, Reid MB. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism [J]. Curr Opin Rheumatol, 2001, 13: 483-487.
24
Gilliam LA, Moylan JS, Ferreira LF, et al. TNF/TNFR1 signaling mediates doxorubicin-induced diaphragm weakness [J]. Am J Physiol Lung Cell Mol Physiol, 2011, 300: L225-31.
25
Gilliam LA, Moylan JS, Callahan LA, et al. Doxorubicin causes diaphragm weakness in murine models of cancer chemotherapy [J]. Muscle Nerve, 2011, 43: 94-102.
26
Chen JL, Colgan TD, Walton KL, et al. The TGF-beta signalling network in muscle development, adaptation and disease [J]. Adv Exp Med Biol, 2016, 900: 97-131.
27
Ramesh G, Reeves WB. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity [J]. J Clin Invest, 2002, 110: 835-842.
28
Ederer AK, Didier KD, Reiter LK, et al. Influence of adjuvant therapy in cancer survivors on endothelial function and skeletal muscle deoxygenation [J]. PLoS One, 2016, 11: e0147691.
29
Daly LE, Ni Bhuachalla EB, Power DG, et al. Loss of skeletal muscle during systemic chemotherapy is prognostic of poor survival in patients with foregut cancer [J]. J Cachexia Sarcopenia Muscle, 2018, 9: 315-325.
30
Barreiro E, Gea J. PARP-1 and PARP-2 activity in cancer induced cachexia: potential therapeutic implications [J]. Biol Chem, 2018, 399: 179-186.
31
Mohamed JS, Wilson JC, Myers MJ, et al. Dysregulation of SIRT-1 in aging mice increases skeletal muscle fatigue by a PARP-1-dependent mechanism [J]. Aging (Albany NY), 2014, 6: 820-834.
32
Pirinen E, Canto C, Jo YS, et al. Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle [J]. Cell Metab, 2014, 19: 1034-1041.
33
Toledo M, Penna F, Oliva F, et al. A multifactorial anticachectic approach for cancer cachexia in a rat model undergoing chemotherapy [J]. J Cachexia Sarcopenia Muscle, 2016, 7: 48-59.
34
Catikkas NM, Bahat Z, Oren MM, et al. Older cancer patients receiving radiotherapy: a systematic review for the role of sarcopenia in treatment outcomes [J]. Aging Clin Exp Res, 2022, 34(8): 1747-1759.
35
Lutz CT, Quinn LS. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism [J]. Aging, 2012, 4, 535-546.
36
Girard D, Paquet ME, Paquin R, et al. Differential effects of interleukin-15 (IL-15) and IL-2 on human neutrophils: modulation of phagocytosis, cytoskeleton rearrangement, gene expression, and apoptosis by IL-15 [J]. Blood, 1996, 88(8): 3176-3184
37
Nelke C, Dziewas R, Minnerup J, et al. Skeletal muscle as potential central link between sarcopenia and immune senescence [J]. EBioMedicine, 2019, 49: 381-388.
38
Haddad F, Zaldivar F, Cooper DM, et al. IL-6-induced skeletal muscle atrophy [J]. J Appl Physiol (1985), 2005, 98(3): 911-917.
39
Akce M, Liu Y, Zakka K, et al. Impact of Sarcopenia, BMI, and inflflammatory biomarkers on survival in advanced hepatocellular carcinoma treated with anti-Pd-1 antibody [J]. Am J Clin Oncol, 2021, 44(2): 74-81.
40
Xiao LS, Li RN, Cui H, et al. Use of computed tomography-derived body composition to determine the prognosis of patients with primary liver cancer treated with immune checkpoint inhibitors: A retrospective cohort study [J]. BMC Cancer, 2022, 22(1): 737.
41
Fujii H, Makiyama A, Iihara H, et al. Cancer cachexia reduces the effificacy of nivolumab treatment in patients with advanced gastric cancer [J]. Anticancer Res, 2020, 40, 7067-7075.
42
Kano M, Hihara J, Tokumoto N, et al. Association between skeletal muscle loss and the response to nivolumab immunotherapy in advanced gastric cancer patients [J]. Int J Clin Oncol, 2021, 26, 523-531.
43
Prado CM, Lieffers JR, Bowthorpe L, et al. Sarcopenia and physical function in overweight patients with advanced cancer [J]. Can J Diet Pract Res, 2013, 74: 69-74.
44
Moro T, Brightwell CR, Deer RR, et al. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training [J]. J Nutr, 2018, 148: 900-909.
45
Volpi E, Kobayashi H, Sheffield-Moore M, et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults [J]. Am J Clin Nutr, 2003, 78: 250-258.
46
Paddon-Jones D, Campbell WW, Jacques PF, et al. Protein and healthy aging [J]. Am J Clin Nutr, 2015, 101: 1339s-1345s.
47
van der Wielen RP, Lowik MR, van den Berg H, et al. Serum vitamin D concentrations among elderly people in Europe [J]. Lancet, 1995, 346: 207-210.
48
Morley JE, Argiles JM, Evans WJ, et al. Nutritional recommendations for the management of sarcopenia [J]. J Am Med Dir Assoc, 2010, 11: 391-396.
49
Rolland Y, Dupuy C, Abellan van Kan G, et al. Treatment strategies for sarcopenia and frailty [J]. Med Clin North Am, 2011, 95(3): 427-348, ix.
50
Murphy RA, Mourtzakis M, Chu QS, et al. Supplementation with fish oil increases first-line chemotherapy efficacy in patients with advanced nonsmall cell lung cancer [J]. Cancer, 2011, 117: 3774-3780.
51
Vallejo J, Spence M, Cheng AL, et al. Cellular and physiological effects of dietary supplementation with beta-Hydroxy-beta-Methylbutyrate (HMB) and beta-Alanine in late middle-aged mice [J]. PLoS One, 2016, 11: e0150066.
52
Alway SE, Pereira SL, Edens NK, et al. beta-Hydroxy beta-methylbutyrate (HMB) enhances the proliferation of satellite cells in fast muscles of aged rats during recovery from disuse atrophy [J]. Exp Gerontol, 2013, 48: 973-984.
53
Stout JR, Smith-Ryan AE, Fukuda DH, et al. Effect of calcium beta-hydroxy-beta-methylbutyrate (CaHMB) with and without resistance training in men and women 65+yrs:a randomized, double-blind pilot trial [J]. Exp Gerontol, 2013, 48: 1303-1310.
[1] 杨霁, 黄顺梅, 王安鸽, 吴月, 杨云梅. 杭州地区老年人群中肌少症患病情况及其与骨质疏松症的相关性分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 207-210.
[2] 李姝敏, 汪晶美, 李晗宇, 吴月, 杨霁, 杨云梅. 老年肌少症患者骨骼肌质量指数与肥胖、骨质疏松及肠道菌群的相关性研究[J]. 中华危重症医学杂志(电子版), 2018, 11(06): 361-365.
[3] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[4] 侯传勇, 刘新晖, 殷建. PFNA与DHS治疗Seinsheimer V型股骨粗隆下骨折合并肌少症的疗效比较[J]. 中华老年骨科与康复电子杂志, 2021, 07(05): 277-283.
[5] 侯传勇, 刘新晖, 张海龙, 孙超, 殷建. 肌少症对老年患者髋部骨折术后远近期死亡率的影响[J]. 中华老年骨科与康复电子杂志, 2020, 06(03): 136-141.
[6] 贡歌, 万文辉, 刘新晖, 殷建. 高龄患者共病指数与肌少症的相关性研究[J]. 中华老年骨科与康复电子杂志, 2019, 05(06): 327-331.
[7] 李蕾, 柳娟, 陆悦. 血清维生素D水平对维持性血液透析患者下肢肌力减退的预测作用[J]. 中华诊断学电子杂志, 2022, 10(03): 197-201.
[8] 陈佳惟, 李泽云, 肖勒, 陈建文, 梁计陵, 周靖涛. 中国老年人肌少症患病率和影响因素的Meta分析[J]. 中华老年病研究电子杂志, 2022, 09(04): 40-45.
[9] 胡奕卿, 黄钰晨, 罗璐, 方继伟, 刘焕兵. 肌少症评估对中老年急性胰腺炎患者的临床预测价值[J]. 中华老年病研究电子杂志, 2022, 09(03): 1-5.
[10] 陶有娣, 黄雄昂, 林坚, 汤洋. 太极拳锻炼对老年慢性肾脏病并发肌少症患者的功能改善作用[J]. 中华老年病研究电子杂志, 2022, 09(02): 18-21.
[11] 胡奕卿, 刘焕兵. 老年人肠道菌群与肌少症[J]. 中华老年病研究电子杂志, 2022, 09(02): 9-12.
[12] 顾欣悦, 王世敏, 潘斌冰, 李盛村. 抗阻运动和镁元素防治肌少症的研究进展[J]. 中华老年病研究电子杂志, 2021, 08(02): 45-49.
[13] 许群, 徐哲荣. 肌少症的诊治新进展[J]. 中华老年病研究电子杂志, 2021, 08(02): 35-44.
[14] 龙囡囡, 吴玉泉, 徐静, 韩超, 曹娟. 老年综合评估指导下的老年肌少症综合干预疗效分析[J]. 中华老年病研究电子杂志, 2021, 08(01): 5-9.
[15] 张艳汝, 刘婷婷, 刘晖, 李继红. 老年衰弱综合征与肌少症的相关性[J]. 中华老年病研究电子杂志, 2019, 06(04): 23-26.
阅读次数
全文


摘要