切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (09) : 955 -961. doi: 10.3877/cma.j.issn.1674-0785.2023.09.005

临床研究

机器学习算法预测老年急性胆囊炎术后住院时间探索
郭震天, 张宗明(), 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤   
  1. 100073 北京,国家电网公司北京电力医院普外科
  • 收稿日期:2023-03-30 出版日期:2023-09-15
  • 通信作者: 张宗明
  • 基金资助:
    北京市科技重大专项生物医药与生命科学创新培育研究(Z171100000417056); 国中康健集团科技项目(SGTYHT/21-JS-223)

Machine learning algorithms for predicting postoperative hospital stay in elderly patients with acute cholecystitis

Zhentian Guo, Zongming Zhang(), Yue Zhao, Limin Liu, Chong Zhang, Zhuo Liu, Hui Qi, Kun Tian   

  1. General Surgery Department, State Grid Corporation Beijing Electric Power Hospital, Beijing 100073, China
  • Received:2023-03-30 Published:2023-09-15
  • Corresponding author: Zongming Zhang
引用本文:

郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J/OL]. 中华临床医师杂志(电子版), 2023, 17(09): 955-961.

Zhentian Guo, Zongming Zhang, Yue Zhao, Limin Liu, Chong Zhang, Zhuo Liu, Hui Qi, Kun Tian. Machine learning algorithms for predicting postoperative hospital stay in elderly patients with acute cholecystitis[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(09): 955-961.

目的

探讨老年急性胆囊炎(AC)患者术后住院时间(POHS)的主要影响因素及预测指标,对比机器学习算法(MLA)与多元线性回归模型(MLR)建立其预测模型的优缺点。

方法

回顾性分析2013年8月~2022年7月北京电力医院普外科手术治疗的287例老年AC患者的临床资料,将POHS分为正常住院时间(ND)组(POHS≤6 d)和长住院时间(LD)组(POHS>6 d),应用MLA与MLR构建预测模型,探讨围手术期变量与POHS的关系,绘制受试者工作特征(ROC)曲线。

结果

287例老年AC手术患者,根据MLA的逻辑回归(LR)、决策树(DT)、朴素贝叶斯(NB)、随机森林(RF)、K最邻近(KNN)算法构建POHS预测模型,绘制ROC曲线,准确率分别为87.9%、84.4%、86.2%、91.3%、74.1%,AUC分别为0.964、0.707、0.973、0.978、0.816,表明上述5种MLA预测模型均具有较好的POHS预测能力。MLR提示合并糖尿病、术前血清白蛋白(ALB)降低、术中出血量多、术后病理报告胆囊化脓或坏疽、术后并发症为老年AC患者POHS的独立危险因素,ROC曲线显示术前ALB的AUC为0.726、术中出血量AUC为0.778,二者的截断值分别是37.35 g/L、12.50 ml。对比两个预测模型,结果发现MLA在预测POHS准确性上优势明显,尤其是其随机森林(RF)算法的准确率最高,而MLR可更为直观地展现预测模型的独立危险因素。

结论

MLA的随机森林算法能更准确预测老年AC患者POHS,MLR提示合并糖尿病、术前ALB降低、术中出血量多、术后病理报告胆囊化脓或坏疽、术后并发症是POHS延长的独立预测因素,据此及时采取有效防治措施,可以缩短POHS,提高医疗质量和服务效率,因此具有临床指导意义。

Objective

To explore the main influencing factors and predictors of postoperative hospital stay (POHS) in elderly patients with acute cholecystitis (AC), and compare the advantages and disadvantages of machine learning algorithms (MLAs) and multiple linear regression (MLR) in establishing prediction models for POHS.

Methods

The clinical data of 287 elderly AC patients treated by general surgery at Beijing Electric Power Hospital from August 2013 to July 2022 were retrospectively analyzed. Based on the duration of POHS, the patients were divided into a normal duration (ND) group (POHS≤6 days) and a long duration (LD) group (POHS>6 days). Prediction models were built using MLAs and MLR to explore the relationship between perioperative variables and POHS, and receiver operating characteristic (ROC) curve analysis was performed to assess the prediction performance of the models.

Results

Based on the clinical data of 287 elderly patients with AC surgery, POHS prediction models were established using the MLAs logistic regression (LR), decision tree (DT), naive Bayes (NB), random forest (RF), and K nearest neighbor (KNN), and ROC curves were plotted. The accuracy rates of these models were 87.9%, 84.4%, 86.2%, 91.3%, and 74.1%, and their AUC (area under the curve) values were 0.964, 0.707, 0.973, 0.978, and 0.816, respectively, indicating that these five MLA prediction models all had good prediction performance for POHS. MLR suggested that the combination of diabetes, decreased preoperative serum albumin (ALB), high intraoperative blood loss, postoperative pathological report of suppuration or gangrene of the gallbladder, and postoperative complications were independent risk factors for POHS in elderly patients with AC after surgery. ROC curve analysis showed that the AUC values of preoperative ALB and intraoperative blood loss for POHS prediction were 0.726 and 0.778, with the cut-off values of 37.35 g/L and 12.50 ml, respectively. Comparing the prediction models developed based on MLAs and MLR, it was found that MLAs had obvious advantages in the predictive accuracy for POHS, with the RF algorithm having the highest accuracy. MLR can more intuitively display the independent risk factors of the prediction model.

Conclusion

The RF algorithm can more accurately predict POHS in elderly AC patients. MLR suggests that diabetes, preoperative ALB reduction, high intraoperative blood loss, postoperative pathological reports of gallbladder suppuration or gangrene, and postoperative complications are independent predictors of POHS prolongation. Therefore, timely and effective prevention and treatment measures can shorten POHS, improve medical quality and service efficiency, and are of great clinical significance.

表1 老年AC患者病例资料与实验室检查
表2 老年AC术中指标及术后病理
表3 老年AC术后并发症
图1 老年AC患者POHS的数据分布:回归标准化残差的直方图 注:AC为急性胆囊炎;POHS为术后住院时间
表4 老年AC影响POHS因素的多因素分析
图2 多元线性回归模型评估老年急性胆囊炎患者术后住院时间的ROC曲线
图3 老年AC患者围术期独立危险因素特征相关热图
表5 老年AC患者五种MLA算法评价
图4 五种机器学习算法评估老年急性胆囊炎患者术后住院时间的ROC曲线
1
Zhang Z, Dong J, Lin F, et al. Focus on the hotspots and difficulties of biliary surgery in older patients [J]. Chin Med J (Engl), 2023, 136(7): 1037-1046.
2
Yokoe M, Hata J, Takada T, et al. Tokyo Guidelines 2018: diagnostic criteria and severity grading of acute cholecystitis (with videos) [J]. J Hepatobiliary Pancreat Sci, 2018, 25(1): 41-54
3
Morimoto Y, Mizuno H, Akamaru Y, et alPredicting prolonged hospital stay after laparoscopic cholecystectomy [J]. Asian J Endosc Surg, 2015, 8(3): 289-295.
4
Nick TG, Campbell KM. Logistic regression [J]. Methods Mol Biol, 2007, 404: 273-301.
5
Jiang H, Mao H, Lu H, et al. Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease [J]. Int J Med Inform, 2021, 145: 104326.
6
Sugahara S, Ueno M. Exact learning augmented naive bayes classifier [J]. Entropy (Basel), 2021, 23(12): 1703.
7
Rigatti SJ. Random forest [J]. J Insur Med, 2017, 47(1): 31-39.
8
Salvador-Meneses J, Ruiz-Chavez Z, Garcia-Rodriguez J. Compressed kNN: K-Nearest neighbors with data compression [J]. Entropy (Basel), 2019, 21(3): 234.
9
Zhang Z, Zhao Y, Lin F, et al. Protective and therapeutic experience of perioperative safety in extremely elderly patients with biliary diseases [J]. Medicine (Baltimore), 2021, 100(21): e26159.
10
Irigonhê ATD, Franzoni AAB, Teixeira HW, et al. Epidemiological and clinical assessment of patients undergoing videolaparoscopic cholecystectomy at a curitiba teaching hospital [J]. Rev Col Bras Cir, 2020, 47: e20202388.
11
Hussain A. Difficult laparoscopic cholecystectomy: current evidence and strategies of management [J]. Surg Laparosc Endosc Percutan Tech, 2011, 21(4): 211-217.
12
Dolan JP, Diggs BS, Sheppard BC, et al. The national mortality burden and significant factors associated with open and laparoscopic cholecystectomy: 1997~2006 [J]. J Gastrointest Surg, 2009, 13(12): 2292-2301.
13
Kologlu M, Tutuncu T, Yuksek YN, et al. Using a risk score for conversion from laparoscopic to open cholecystectomy in resident training [J]. Surgery, 2004, 135(3): 282-287.
14
Buia A, Stockhausen F, Filmann N, et al. 2D vs. 3D imaging in laparoscopic surgery-results of a prospective randomized trial [J]. Langenbecks Arch Surg, 2017, 402(8): 1241-1253.
15
Yetkin G, Uludag M, Citgez B, et al. Predictive factors for conversion of laparoscopic cholecystectomy in patients with acute cholecystitis [J]. Bratisl Lek Listy, 2009, 110(11): 688-691.
16
Rosen M, Brody F, Ponsky J. Predictive factors for conversion of laparoscopic cholecystectomy [J]. Am J Surg, 2002, 184(3): 254-258.
17
Ko-Iam W, Sandhu T, Paiboonworachat S, et al. Predictive factors for a long hospital stay in patients undergoing laparoscopic cholecystectomy [J]. Int J Hepatol, 2017, 2017: 5497936.
18
Inukai K. Predictive factors for a long postoperative stay after emergency laparoscopic cholecystectomy using the 2013 Tokyo guidelines: A retrospective study [J]. Minim Invasive Surg, 2019, 2019: 3942584.
19
Shiraki T, Iida O, Takahara M, et al. Predictors of delayed wound healing after endovascular therapy of isolated infrapopliteal lesions underlying critical limb ischemia in patients with high prevalence of diabetes mellitus and hemodialysis [J]. Eur J Vasc Endovasc Surg, 2015, 49(5): 565-573.
20
Azuma N, Uchida H, Kokubo T, et al. Factors influencing wound healing of critical ischaemic foot after bypass surgery: Is the angiosome important in selecting bypass target artery? [J]. Eur J Vasc Endovasc Surg, 2012, 43(3): 322-328.
21
Takahara M, Iida O, Soga Y, et al. Length and cost of hospital stay in poor-risk patients with critical limb ischemia undergoing revascularization [J]. Circ J, 2018, 82(10): 2634-2639.
22
Huang Y, Mao Y, Xu L, et al. Exploring risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: construction of a novel population-based predictive model [J]. BMC Endocr Disord, 2022, 22(1): 269.
23
张驰, 李彦青, 刘德平, 等. 临床医学研究生学习行为的预测模型研究-线性回归和机器学习的对比分析 [J]. 中华医学教育探索杂志, 2021, 20(3): 350-355.
[1] 陈翠萍, 李佩君, 杜景榕, 谢青梅, 许一宁, 卓姝妤, 李晓芳. 互联网联合上门护理在老年全髋关节置换术后的应用效果[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 676-681.
[2] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[3] 曾敬, 吴冬冬, 邵明, 范震波, 王治国, 刘培谊, 兰海峰. 高龄髋部骨折患者不同手术时机的围手术期疗效评估[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 445-449.
[4] 杜雪清, 冯周莲, 钟佩珍, 潘杏玲. 老年股骨粗隆间骨折患者应用护士主导的共管模式[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 421-426.
[5] 王兴, 文阳辉, 姚戈冰, 郭平学, 杨自华. ICG荧光腹腔镜下胆囊切除术的临床应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 663-666.
[6] 康婵娟, 张海涛, 翟静洁. 胰管支架置入术治疗急性胆源性胰腺炎的效果及对患者肝功能、炎症因子水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 667-670.
[7] 宋俊锋, 张珍珍. 单侧初发性腹股沟斜疝老年患者经腹腹膜前疝修补术中残余疝囊腹直肌下缘固定效果评估[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 670-674.
[8] 张晋伟, 董永红, 王家璇. 基于GBD2021 数据库对中国与全球老年人疝疾病负担和健康不平等的分析比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 708-716.
[9] 袁志静, 黄杰, 何国安, 方辉强. 罗哌卡因联合右美托咪定局部阻滞麻醉在老年腹腔镜下无张力疝修补术中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 557-561.
[10] 邵世锋, 肖钦, 沈方龙, 张迅, 郝志鹏, 伍正彬, 谢晓娟, 王耀丽. 老年胸主动脉钝性伤的重症救治分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 762-767.
[11] 中国研究型医院学会微创外科学专业委员会. 单孔腹腔镜胆囊切除术中国专家共识(2024版)[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 193-198.
[12] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[13] 张骞, 唐伟, 刘丽丽. 右美托咪定复合羟考酮对老年经皮椎间孔镜腰椎间盘切除术患者术后认知功能、镇痛效果的影响[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 209-214.
[14] 鲁宁, 魏立友, 李亮, 张玉龙. 老年桡骨远端骨折小夹板治疗后早期腕关节功能恢复的相关因素分析[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 222-228.
[15] 崔健, 夏青, 林云, 李光玲, 李心娜, 王位. 血小板与淋巴细胞比值、免疫球蛋白、心肌酶谱及心电图对中老年肝硬化患者病情及预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 400-406.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?