切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (12) : 1320 -1324. doi: 10.3877/cma.j.issn.1674-0785.2023.12.018

所属专题: 临床药学 骨科学

综述

矿化胶原在骨缺损治疗中应用的研究进展
刘世航, 周帅, 秦士吉, 程晓东, 丁凯, 王海程, 李超, 卢军丽, 吕红芝()   
  1. 050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室;050017 石家庄,河北医科大学公共卫生学院
    050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室;050051 石家庄,河北医科大学第三医院足踝外科
    050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室
    061031 沧州,河北省中西医结合骨关节病研究重点实验室
    100191 北京,北京大学运动医学研究所
    050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室;050051 石家庄,河北医科大学第三医院放射科
  • 收稿日期:2023-10-14 出版日期:2023-12-15
  • 通信作者: 吕红芝
  • 基金资助:
    河北省自然科学基金(2021206317)

Advances in application of mineralized collagen in treatment of bone defects

Shihang Liu, Shuai Zhou, Shiji Qin, Xiaodong Cheng, Kai Ding, Haicheng Wang, Chao Li, Junli Lu, Hongzhi Lyu()   

  1. The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China;School of Public Health, Hebei Medical University, Shijiangzhuang 050017, China
    The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China;Department of Foot and Ankle Surgery, the Third Hospital of Hebei Medical University, Shijiangzhuang 050051, China
    The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China
    Hebei Provincial Key Laboratory of Integrated Chinese and Western Medicine for Bone and Joint Disease Research, Changzhou 061031, China
    Institute of Sports Medicine, Peking University, Beijing 100191, China
    The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China;Department of Radiology, the Third Hospital of Hebei Medical University, Shijiangzhuang 050051, China
  • Received:2023-10-14 Published:2023-12-15
  • Corresponding author: Hongzhi Lyu
引用本文:

刘世航, 周帅, 秦士吉, 程晓东, 丁凯, 王海程, 李超, 卢军丽, 吕红芝. 矿化胶原在骨缺损治疗中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1320-1324.

Shihang Liu, Shuai Zhou, Shiji Qin, Xiaodong Cheng, Kai Ding, Haicheng Wang, Chao Li, Junli Lu, Hongzhi Lyu. Advances in application of mineralized collagen in treatment of bone defects[J/OL]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(12): 1320-1324.

骨组织具有天然的再生能力,但对于较为严重的骨缺损,其治疗需要一定的临床干预。临床修复各种骨缺损的金标准是骨移植,天然骨的治疗移植存在取材有限、并发感染、免疫排斥等问题,人工骨修复材料一定程度上避免了上述问题,提供了较大的应用潜力和前景。矿化胶原是目前仿生程度最高的骨缺损修复材料之一,具有天然骨的成分和多级结构,不仅自身具有治疗骨缺损的能力,还可以与其他物质复合,如高聚物,搭载金属离子与促血管、成骨因子等,提高修复骨缺损的能力。本文着重于治疗骨缺损临床问题,总结了矿化胶原及以其为基质的修复材料治疗不同骨缺损的应用,以期矿化胶原材料为治疗骨缺损修复提供思路。

Bone tissue has a natural regenerative ability, but serious bone defects require certain clinical interventions. The gold standard for clinical repair of various bone defects is bone grafting; however, there are problems such as limited access to natural bone for therapeutic grafting, concurrent infections, and immune rejection. Artificial bone repair materials avoid the above problems to a certain extent and offer greater potential and prospects for application. Mineralized collagen is one of the most biomimetic bone defect repair materials, with the composition and multilevel structure of natural bone, which not only has the ability to treat bone defects by itself, but also can be compounded with other substances, such as polymers, metal ions, and angiogenic and osteogenic factors, to improve its ability to repair bone defects. This paper focuses on the clinical problems of treating bone defects, and summarizes the application of mineralized collagen and repair materials using it as a matrix for treating different bone defects, with an aim to to provide ideas for using mineralized collagen materials for bone defect repair.

1
Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020,7(1):54.
2
Habibovic P. Strategic directions in osteoinduction and biomimetics[J]. Tissue Eng Part A, 2017,23(23-24):1295-1296.
3
Wang J, Liu Q, Guo Z, et al. Progress on biomimetic mineralization and materials for hard tissue regeneration[J]. ACS Biomater Sci Eng, 2023,9(4):1757-1773.
4
Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update[J]. Injury, 2005,36Suppl 3:S20-27.
5
Baldwin P, Li DJ, Auston DA, et al. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery[J]. J Orthop Trauma, 2019,33(4):203-213.
6
殷渠东, 顾三军, 芮永军,等. 松质骨包裹植骨技术治疗长骨节段性骨缺损[J]. 中华创伤骨科杂志,2017,19(9):775-781.
7
Schmidt AH. Autologous bone graft: is it still the gold standard?[J]. Injury, 2021,52Suppl 2:S18-S22.
8
胡小晓, 叶剑平, 蒋志勇,等. 微创方法结合自体外周血干细胞及同种异体冻干骨载体治疗四肢骨干术后骨不愈合[J]. 中国骨与关节损伤杂志,2015,30(5):536-537.
9
Miron RJ, Gruber R, Hedbom E, et al. Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts[J]. Clin Implant Dent Relat Res, 2013,15(4):481-489.
10
Zheng J, Zhao Z, Yang Y, et al. Biphasic mineralized collagen-based composite scaffold for cranial bone regeneration in developing sheep[J]. Regen Biomater, 2022,9:rbac004.
11
DiMaio FR. The science of bone cement: a historical review[J]. Orthopedics, 2002,25(12):1399-1407.
12
Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration[J]. Nat Rev Rheumatol, 2009,5(12):685-697.
13
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020,110:110698.
14
Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair[J]. Int J Mol Sci, 2021,22(2):944.
15
Gong T, Xie J, Liao J, et al. Nanomaterials and bone regeneration[J]. Bone Res, 2015,3:15029.
16
Liu CD, Jiang LY, Du WT, et al. Synergistic intrafibrillar/extrafibrillar mineralization of collagen fibrils and scaffolds enhanced by introducing polyacrylamide to PILP for osteogenic differentiation[J]. J Appl Polym Sci,2023,140(33): 54275.
17
Weiner S, Dove MP. An overview of biomineralization processes and the problem of the vital effect[J]. Rev Mineral Geochem,2003,54(1):1-29.
18
Fratzl P, Gupta SH,Paschalis PE, et al. Structure and mechanical quality of the collagen mineral nano-composite in bone[J]. J Mater Chem, 2004, 14(14):2115-2123.
19
Al-Qudsy L, Hu YW, Xu H, et al. Mineralized collagen fibrils: an essential component in determining the mechanical behavior of cortical bone[J]. ACS Biomater Sci Eng, 2023,9(5):2203-2219.
20
Rollo J, Boffa R, Cesar R, et al. Assessment of trabecular bones microarchitectures and crystal structure of hydroxyapatite in bone osteoporosis with application of the rietveld method[J]. Procedia Eng,2015:1108-1114.
21
Li Z, Du T, Ruan C, et al. Bioinspired mineralized collagen scaffolds for bone tissue engineering[J]. Bioact Mater, 2021,6(5):1491-1511.
22
Du T, Niu Y, Liu Y, et al. Physical and chemical characterization of biomineralized collagen with different microstructures[J]. J Funct Biomater, 2022,13(2):57.
23
Du T, Niu Y, Jia Z, et al. Orthophosphate and alkaline phosphatase induced the formation of apatite with different multilayered structures and mineralization balance[J]. Nanoscale, 2022,14(5):1814-1825.
24
Hassan M, Sulaiman M, Yuvaraju PD, et al. Biomimetic PLGA/strontium-zinc nano hydroxyapatite composite scaffolds for bone regeneration[J]. J Funct Biomater, 2022,13(1):13.
25
Hu C, Zhang L, Wei M. Development of biomimetic scaffolds with both intrafibrillar and extrafibrillar mineralization[J]. ACS Biomater Sci Eng, 2015,1(8):669-676.
26
Meng Q, An S, Damion RA, et al. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage[J]. J Mech Behav Biomed Mater, 2017,65:439-453.
27
Liu Y, Li N, Qi YP, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly[J]. Adv Mater, 2011,23(8):975-980.
28
Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nat Mater, 2015,14(1):23-36.
29
Wang Y, Van Manh N, Wang H, et al. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects[J]. Int J Nanomedicine, 2016,11:2053-2067.
30
Du T, Niu X, Hou S, et al. Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers[J]. J Biomed Mater Res A, 2019,107(11):2403-2413.
31
Matlahov I, Iline-vul T, Abayev M, et al. Interfacial mineral-peptide properties of a mineral binding peptide from osteonectin and bone-like apatite[J]. Chem Mater,2015,27(16):5562-5569.
32
Du TM, Yang HS, Niu XF. Phosphorus-containing compounds regulate mineralization[J]. Mater Today Chem,2021,22:100579.
33
Minardi S, Taraballi F, Cabrera FJ, et al. Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model[J]. Mater Today Bio, 2019, 2:100005.
34
Xu SJ, Qiu ZY, Wu JJ, et al. Osteogenic differentiation gene expression profiling of hmscs on hydroxyapatite and mineralized collagen[J]. Tissue Eng Part A, 2016,22(1-2):170-181.
35
Cunniffe GM, Dickson GR, Partap S, et al. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering[J]. J Mater Sci Mater Med, 2010,21(8):2293-2298.
36
Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications[J]. Acta Biomater, 2019,93:86-96.
37
Yu L, Rowe DW, Perera IP, et al. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration[J]. ACS Appl Mater Interfaces, 2020,12(16):18235-18249.
38
Munhoz M, Hirata HH, Plepis A, et al. Use of collagen/chitosan sponges mineralized with hydroxyapatite for the repair of cranial defects in rats[J]. Injury, 2018,49(12):2154-2160.
39
Olson YT, Orme AC, Han YT, et al. Shape control synthesis of fluorapatite structures based on supersaturation: prismatic nanowires, ellipsoids, star, and aggregate formation[J]. Cryst Eng Comm, 2012.
40
Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review[J]. Materials (Basel), 2019,12(17):2683.
41
Jiang W, Griffanti G, Tamimi F, et al. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels[J]. J Struct Biol, 2020,212(1):107592.
42
Yu Q, Wang C, Yang J, et al. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction[J]. Biomed Mater, 2018,13(6):065008.
43
Zhang Z, Li Z, Zhang C, et al. Biomimetic intrafibrillar mineralized collagen promotes bone regeneration via activation of the Wnt signaling pathway[J]. Int J Nanomedicine, 2018,13:7503-7516.
44
Yang L, Manoj P. Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing[J]. Acta Biomaterialia,2023,162164-181.
45
Mohseni M, Jahandideh A, Abedi G, et al. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits[J]. Artif Cells Nanomed Biotechnol, 2018,46(2):242-249.
46
Zhu W, Li C, Yao M, et al. Advances in osseointegration of biomimetic mineralized collagen and inorganic metal elements of natural bone for bone repair[J]. Regen Biomater, 2023,10:rbad030.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 张晓宇, 殷雨来, 张银旭. 阿帕替尼联合新辅助化疗对三阴性乳腺癌的疗效及预后分析[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 346-352.
[3] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[4] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[5] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[6] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[7] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[8] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[9] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 陈杰, 武明胜, 李一金, 李虎, 向源楚, 荣新奇, 彭健. 低位直肠癌冷冻治疗临床初步分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 494-498.
[12] 国文凯, 纪鹏程, 毕靖茹, 谢院生. IgA 肾病的十种治疗措施[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 327-333.
[13] 帖璇, 苏晓乐, 王利华. 抗中性粒细胞胞质抗体相关性血管炎治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 345-351.
[14] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[15] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?