切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2023, Vol. 17 ›› Issue (12) : 1320 -1324. doi: 10.3877/cma.j.issn.1674-0785.2023.12.018

综述

矿化胶原在骨缺损治疗中应用的研究进展
刘世航, 周帅, 秦士吉, 程晓东, 丁凯, 王海程, 李超, 卢军丽, 吕红芝()   
  1. 050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室;050017 石家庄,河北医科大学公共卫生学院
    050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室;050051 石家庄,河北医科大学第三医院足踝外科
    050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室
    061031 沧州,河北省中西医结合骨关节病研究重点实验室
    100191 北京,北京大学运动医学研究所
    050051 石家庄,河北医科大学第三医院,河北省骨科研究所,河北省骨科生物力学重点实验室;050051 石家庄,河北医科大学第三医院放射科
  • 收稿日期:2023-10-14 出版日期:2023-12-15
  • 通信作者: 吕红芝
  • 基金资助:
    河北省自然科学基金(2021206317)

Advances in application of mineralized collagen in treatment of bone defects

Shihang Liu, Shuai Zhou, Shiji Qin, Xiaodong Cheng, Kai Ding, Haicheng Wang, Chao Li, Junli Lu, Hongzhi Lyu()   

  1. The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China;School of Public Health, Hebei Medical University, Shijiangzhuang 050017, China
    The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China;Department of Foot and Ankle Surgery, the Third Hospital of Hebei Medical University, Shijiangzhuang 050051, China
    The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China
    Hebei Provincial Key Laboratory of Integrated Chinese and Western Medicine for Bone and Joint Disease Research, Changzhou 061031, China
    Institute of Sports Medicine, Peking University, Beijing 100191, China
    The Third Hospital of Hebei Medical University, Orthopedic Research Institute of Hebei Province, Key Laboratory of Biomechanics of Hebei Province, Shijiangzhuang 050051, China;Department of Radiology, the Third Hospital of Hebei Medical University, Shijiangzhuang 050051, China
  • Received:2023-10-14 Published:2023-12-15
  • Corresponding author: Hongzhi Lyu
引用本文:

刘世航, 周帅, 秦士吉, 程晓东, 丁凯, 王海程, 李超, 卢军丽, 吕红芝. 矿化胶原在骨缺损治疗中应用的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1320-1324.

Shihang Liu, Shuai Zhou, Shiji Qin, Xiaodong Cheng, Kai Ding, Haicheng Wang, Chao Li, Junli Lu, Hongzhi Lyu. Advances in application of mineralized collagen in treatment of bone defects[J]. Chinese Journal of Clinicians(Electronic Edition), 2023, 17(12): 1320-1324.

骨组织具有天然的再生能力,但对于较为严重的骨缺损,其治疗需要一定的临床干预。临床修复各种骨缺损的金标准是骨移植,天然骨的治疗移植存在取材有限、并发感染、免疫排斥等问题,人工骨修复材料一定程度上避免了上述问题,提供了较大的应用潜力和前景。矿化胶原是目前仿生程度最高的骨缺损修复材料之一,具有天然骨的成分和多级结构,不仅自身具有治疗骨缺损的能力,还可以与其他物质复合,如高聚物,搭载金属离子与促血管、成骨因子等,提高修复骨缺损的能力。本文着重于治疗骨缺损临床问题,总结了矿化胶原及以其为基质的修复材料治疗不同骨缺损的应用,以期矿化胶原材料为治疗骨缺损修复提供思路。

Bone tissue has a natural regenerative ability, but serious bone defects require certain clinical interventions. The gold standard for clinical repair of various bone defects is bone grafting; however, there are problems such as limited access to natural bone for therapeutic grafting, concurrent infections, and immune rejection. Artificial bone repair materials avoid the above problems to a certain extent and offer greater potential and prospects for application. Mineralized collagen is one of the most biomimetic bone defect repair materials, with the composition and multilevel structure of natural bone, which not only has the ability to treat bone defects by itself, but also can be compounded with other substances, such as polymers, metal ions, and angiogenic and osteogenic factors, to improve its ability to repair bone defects. This paper focuses on the clinical problems of treating bone defects, and summarizes the application of mineralized collagen and repair materials using it as a matrix for treating different bone defects, with an aim to to provide ideas for using mineralized collagen materials for bone defect repair.

1
Wei S, Ma JX, Xu L, et al. Biodegradable materials for bone defect repair[J]. Mil Med Res, 2020,7(1):54.
2
Habibovic P. Strategic directions in osteoinduction and biomimetics[J]. Tissue Eng Part A, 2017,23(23-24):1295-1296.
3
Wang J, Liu Q, Guo Z, et al. Progress on biomimetic mineralization and materials for hard tissue regeneration[J]. ACS Biomater Sci Eng, 2023,9(4):1757-1773.
4
Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update[J]. Injury, 2005,36Suppl 3:S20-27.
5
Baldwin P, Li DJ, Auston DA, et al. Autograft, allograft, and bone graft substitutes: clinical evidence and indications for use in the setting of orthopaedic trauma surgery[J]. J Orthop Trauma, 2019,33(4):203-213.
6
殷渠东, 顾三军, 芮永军,等. 松质骨包裹植骨技术治疗长骨节段性骨缺损[J]. 中华创伤骨科杂志,2017,19(9):775-781.
7
Schmidt AH. Autologous bone graft: is it still the gold standard?[J]. Injury, 2021,52Suppl 2:S18-S22.
8
胡小晓, 叶剑平, 蒋志勇,等. 微创方法结合自体外周血干细胞及同种异体冻干骨载体治疗四肢骨干术后骨不愈合[J]. 中国骨与关节损伤杂志,2015,30(5):536-537.
9
Miron RJ, Gruber R, Hedbom E, et al. Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts[J]. Clin Implant Dent Relat Res, 2013,15(4):481-489.
10
Zheng J, Zhao Z, Yang Y, et al. Biphasic mineralized collagen-based composite scaffold for cranial bone regeneration in developing sheep[J]. Regen Biomater, 2022,9:rbac004.
11
DiMaio FR. The science of bone cement: a historical review[J]. Orthopedics, 2002,25(12):1399-1407.
12
Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration[J]. Nat Rev Rheumatol, 2009,5(12):685-697.
13
Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020,110:110698.
14
Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair[J]. Int J Mol Sci, 2021,22(2):944.
15
Gong T, Xie J, Liao J, et al. Nanomaterials and bone regeneration[J]. Bone Res, 2015,3:15029.
16
Liu CD, Jiang LY, Du WT, et al. Synergistic intrafibrillar/extrafibrillar mineralization of collagen fibrils and scaffolds enhanced by introducing polyacrylamide to PILP for osteogenic differentiation[J]. J Appl Polym Sci,2023,140(33): 54275.
17
Weiner S, Dove MP. An overview of biomineralization processes and the problem of the vital effect[J]. Rev Mineral Geochem,2003,54(1):1-29.
18
Fratzl P, Gupta SH,Paschalis PE, et al. Structure and mechanical quality of the collagen mineral nano-composite in bone[J]. J Mater Chem, 2004, 14(14):2115-2123.
19
Al-Qudsy L, Hu YW, Xu H, et al. Mineralized collagen fibrils: an essential component in determining the mechanical behavior of cortical bone[J]. ACS Biomater Sci Eng, 2023,9(5):2203-2219.
20
Rollo J, Boffa R, Cesar R, et al. Assessment of trabecular bones microarchitectures and crystal structure of hydroxyapatite in bone osteoporosis with application of the rietveld method[J]. Procedia Eng,2015:1108-1114.
21
Li Z, Du T, Ruan C, et al. Bioinspired mineralized collagen scaffolds for bone tissue engineering[J]. Bioact Mater, 2021,6(5):1491-1511.
22
Du T, Niu Y, Liu Y, et al. Physical and chemical characterization of biomineralized collagen with different microstructures[J]. J Funct Biomater, 2022,13(2):57.
23
Du T, Niu Y, Jia Z, et al. Orthophosphate and alkaline phosphatase induced the formation of apatite with different multilayered structures and mineralization balance[J]. Nanoscale, 2022,14(5):1814-1825.
24
Hassan M, Sulaiman M, Yuvaraju PD, et al. Biomimetic PLGA/strontium-zinc nano hydroxyapatite composite scaffolds for bone regeneration[J]. J Funct Biomater, 2022,13(1):13.
25
Hu C, Zhang L, Wei M. Development of biomimetic scaffolds with both intrafibrillar and extrafibrillar mineralization[J]. ACS Biomater Sci Eng, 2015,1(8):669-676.
26
Meng Q, An S, Damion RA, et al. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage[J]. J Mech Behav Biomed Mater, 2017,65:439-453.
27
Liu Y, Li N, Qi YP, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly[J]. Adv Mater, 2011,23(8):975-980.
28
Wegst UG, Bai H, Saiz E, et al. Bioinspired structural materials[J]. Nat Mater, 2015,14(1):23-36.
29
Wang Y, Van Manh N, Wang H, et al. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects[J]. Int J Nanomedicine, 2016,11:2053-2067.
30
Du T, Niu X, Hou S, et al. Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers[J]. J Biomed Mater Res A, 2019,107(11):2403-2413.
31
Matlahov I, Iline-vul T, Abayev M, et al. Interfacial mineral-peptide properties of a mineral binding peptide from osteonectin and bone-like apatite[J]. Chem Mater,2015,27(16):5562-5569.
32
Du TM, Yang HS, Niu XF. Phosphorus-containing compounds regulate mineralization[J]. Mater Today Chem,2021,22:100579.
33
Minardi S, Taraballi F, Cabrera FJ, et al. Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model[J]. Mater Today Bio, 2019, 2:100005.
34
Xu SJ, Qiu ZY, Wu JJ, et al. Osteogenic differentiation gene expression profiling of hmscs on hydroxyapatite and mineralized collagen[J]. Tissue Eng Part A, 2016,22(1-2):170-181.
35
Cunniffe GM, Dickson GR, Partap S, et al. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering[J]. J Mater Sci Mater Med, 2010,21(8):2293-2298.
36
Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications[J]. Acta Biomater, 2019,93:86-96.
37
Yu L, Rowe DW, Perera IP, et al. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration[J]. ACS Appl Mater Interfaces, 2020,12(16):18235-18249.
38
Munhoz M, Hirata HH, Plepis A, et al. Use of collagen/chitosan sponges mineralized with hydroxyapatite for the repair of cranial defects in rats[J]. Injury, 2018,49(12):2154-2160.
39
Olson YT, Orme AC, Han YT, et al. Shape control synthesis of fluorapatite structures based on supersaturation: prismatic nanowires, ellipsoids, star, and aggregate formation[J]. Cryst Eng Comm, 2012.
40
Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review[J]. Materials (Basel), 2019,12(17):2683.
41
Jiang W, Griffanti G, Tamimi F, et al. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels[J]. J Struct Biol, 2020,212(1):107592.
42
Yu Q, Wang C, Yang J, et al. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction[J]. Biomed Mater, 2018,13(6):065008.
43
Zhang Z, Li Z, Zhang C, et al. Biomimetic intrafibrillar mineralized collagen promotes bone regeneration via activation of the Wnt signaling pathway[J]. Int J Nanomedicine, 2018,13:7503-7516.
44
Yang L, Manoj P. Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing[J]. Acta Biomaterialia,2023,162164-181.
45
Mohseni M, Jahandideh A, Abedi G, et al. Assessment of tricalcium phosphate/collagen (TCP/collagene)nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits[J]. Artif Cells Nanomed Biotechnol, 2018,46(2):242-249.
46
Zhu W, Li C, Yao M, et al. Advances in osseointegration of biomimetic mineralized collagen and inorganic metal elements of natural bone for bone repair[J]. Regen Biomater, 2023,10:rbad030.
[1] 蒙礼娟, 麻艺群, 王璐, 张梦思, 范鑫, 许水淋, 杨丽红, 朱辉, 付晋凤. 采用SRT-100放射治疗儿童增生性瘢痕的临床疗效初探[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 16-23.
[2] 中华医学会肿瘤学分会早诊早治学组. 中国结直肠癌早诊早治专家共识(2023版)[J]. 中华普通外科学文献(电子版), 2024, 18(01): 1-13.
[3] 屈少华, 胡晔东, 赵修浩, 李文娜, 向鹏程, 肖子添, 马启明, 韩俊毅. 伴有无效食管动力的胃食管反流病用药和手术治疗的效果对比[J]. 中华普通外科学文献(电子版), 2024, 18(01): 23-28.
[4] 尚峰进, 陈陆尧, 刘亚星, 张浩然, 连长红. 肿瘤相关中性粒细胞在胃癌发生发展和治疗中的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(01): 58-61.
[5] 赵燕, 王昱昊, 王娟, 杨建军. 胃肠间质瘤的诊疗进展[J]. 中华普通外科学文献(电子版), 2024, 18(01): 66-70.
[6] 沈海龙, 张建国, 邵一阳, 周晓超, 郭春来, 匡哲. 局部进展期低位直肠癌伴侧方淋巴短径<10 mm新辅助治疗后TME+LLND术的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 192-195.
[7] 吴波, 郑永明, 杜世强. SPECT/CT及血清sTg水平预测甲状腺癌术后131I治疗患者淋巴结转移风险的价值分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 212-216.
[8] 吴文娟, 王小莉, 刘娟. 乳腺结节微创手术治疗进展研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 229-232.
[9] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[10] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[11] 任磊, 张瑞敏, 赵永祥. 隐睾患儿病因分析及临床诊疗进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 100-104.
[12] 邓新军, 李正明, 李文彬. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发恶性肿瘤并发于肺癌并脑转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 114-117.
[13] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[14] 张占国. 靶向免疫治疗时代的肝癌肝切除术再思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 11-15.
[15] 张宇, 余灵祥, 杨永平, 赵德希, 刁广浩, 杨木易, 赵亮, 刘佳, 李鹏, 张宁, 任辉. 原发性肝癌Ⅲa期降期后肝切除临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 78-82.
阅读次数
全文


摘要