切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 214 -218. doi: 10.3877/cma.j.issn.1674-0785.2024.02.017

综述

纳米泡载药靶向治疗动脉粥样硬化的研究进展
麻凌峰1, 张小杉2, 施依璐2, 段莎莎2, 魏颖3, 夏士林4, 张敏洁1, 王雅皙2,()   
  1. 1. 010110 呼和浩特,内蒙古医科大学
    2. 010050 呼和浩特,内蒙古医科大学附属医院超声科
    3. 010050 呼和浩特,内蒙古医科大学附属医院临床医学研究中心(医学细胞生物学重点实验室/工程实验室)
    4. 116011 大连,大连医科大学第一附属医院中西医结合临床重点学科实验室
  • 收稿日期:2023-11-10 出版日期:2024-02-15
  • 通信作者: 王雅皙
  • 基金资助:
    内蒙古自治区自然科学基金(2021MS08018); 中央引导地方科技发展资金项目(2021ZY0026); 高校青年科技英才(NJYT22021); 医疗卫生科技计划项目(202201310); 2022年第十二批“草原英才”工程高层次培养人才项目; 内蒙古自治区自然科学基金(2022MS08050)

Progress in drug-targeted therapy of arteriosclerosis with nanobubbles

Lingfeng Ma1, Xiaoshan Zhang2, Yilu Shi2, Shasha Duan2, Ying Wei3, Shilin Xia4, Minjie Zhang1, Yaxi Wang2,()   

  1. 1. Inner Mongolia Medical University, Hohhot 010110, China
    2. Department of Ultrasound, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
    3. Clinical Medical Research Center of the Affiliated Hospital/Autonomous Region Key Laboratory of Medical Cell Biology, Inner Mongolia Medical University, Hohhot 010050, China
    4. Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
  • Received:2023-11-10 Published:2024-02-15
  • Corresponding author: Yaxi Wang
引用本文:

麻凌峰, 张小杉, 施依璐, 段莎莎, 魏颖, 夏士林, 张敏洁, 王雅皙. 纳米泡载药靶向治疗动脉粥样硬化的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 214-218.

Lingfeng Ma, Xiaoshan Zhang, Yilu Shi, Shasha Duan, Ying Wei, Shilin Xia, Minjie Zhang, Yaxi Wang. Progress in drug-targeted therapy of arteriosclerosis with nanobubbles[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(02): 214-218.

动脉粥样硬化(AS)是我国城乡居民心血管疾病相关死亡的主要原因。目前的治疗方法是使用西药或中成药,以简单的制剂口服或静脉注射。然而,该方法存在生物利用度低、治疗持续时间长、患者依从性差等局限性,导致治疗效果普遍较差。为了克服这些挑战,细胞外囊泡已成为一种有前途的天然纳米递送系统,它可以有效地将治疗药物靶向特定位置,而不会对其他系统造成不利影响。这种方法在精准治疗心血管疾病方面具有巨大潜力。在各类细胞外囊泡中,仿生纳米气泡因其优越的生物相容性、无毒、靶向能力强、对肝肾损伤极小而受到关注。本文全面综述了AS治疗策略的最新进展,以及利用纳米气泡(包括传统纳米气泡药物递送和仿生纳米气泡药物递送)治疗AS的最新进展。

Atherosclerotic (AS) is the leading cause of cardiovascular disease-related deaths among both urban and rural residents in China. The current treatment approach involves the use of Western or traditional Chinese patent medicines, which are administered orally or intravenously in simple preparations. However, this method has several limitations including low bioavailability, long treatment duration, and poor patient compliance, resulting in generally poor treatment outcomes. To overcome these challenges, extracellular vesicles have emerged as a promising natural nanodelivery system that can effectively target therapeutic drugs to specific locations without causing adverse effects on other systems. This approach holds significant potential for precise treatment of cardiovascular diseases. Among the various types of extracellular vesicles, biomimetic nanobubbles have gained attention due to their superior biocompatibility, non-toxic nature, strong targeting ability, and minimal liver and kidney damage. This article provides a comprehensive review of the recent advancements in the treatment strategies for AS and the latest progress in the use of nanobubbles, including traditional nanobubble drug delivery and biomimetic nanobubble drug delivery, for the treatment of AS.

1
王增武, 刘静, 李建军, 等. 中国血脂管理指南(2023年)[J]. 中国循环杂志, 2023, 38(3): 237-271.
2
Fan J, Watanabe T. Atherosclerosis: known and unknown[J]. Pathol Int, 2022, 72(3): 151-160.
3
Lankala CR, Yasir M, Ishak A, et al. Application of nanotechnology for diagnosis and drug delivery in atherosclerosis: A new horizon of treatment[J]. Curr Probl Cardiol, 2023, 48(6): 101671.
4
Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles[J]. Nat Rev Clin Oncol, 2023, 20(1): 33-48.
5
Lee YJ, Cho JY, You SC, et al. Moderate-intensity statin with ezetimibe vs. high-intensity statin in patients with diabetes and atherosclerotic cardiovascular disease in the RACING trial[J]. Eur Heart J, 2023, 44(11): 972-983.
6
Wang C, Niimi M, Watanabe T, et al. Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries[J]. Atherosclerosis, 2018 , 277: 136-144.
7
Huang YW, Zhang M, Wang LT, et al. 20(S)-Protopanaxadiol decreases atherosclerosis in ApoE KO mice by increasing the levels of LDLR and inhibiting its binding with PCSK9[J]. Food Funct, 2022, 13(13): 7020-7028.
8
Diao H, Cheng J, Huang X, et al. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against atherosclerosis by suppressing EndMT via modulating Akt1/beta-catenin signaling pathway[J]. J Ethnopharmacol, 2022, 293: 115261.
9
Wang Y, Xu Y, Xu X, et al. Ginkgo biloba extract ameliorates atherosclerosis via rebalancing gut flora and microbial metabolism[J]. Phytother Res, 2022, 36(6): 2463-2480.
10
Zhi W, Liu Y, Wang X, et al. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis[J]. J Ethnopharmacol, 2023, 301: 115749.
11
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: Are we there yet?[J]. Int J Mol Sci, 2020, 22(1): 385.
12
胡琼, 凌文武, 赵宇亮. 超声技术在肾疾病诊疗中的应用[J/OL]. 中华临床医师杂志(电子版), 2020, 14(2): 136-139.
13
李二晶, 荆慧. 超声纳米微泡造影剂在肿瘤诊疗中的研究进展[J]. 现代肿瘤医学, 2021, 29(24): 4410-4413.
14
王婷婷, 于莉莉, 周阳, 等. 纳米技术在动脉粥样硬化治疗中最新进展[J]. 中华老年心脑血管病杂志, 2023, 25(6): 658-660.
15
Khan MS, Hwang J, Lee K, et al. Surface composition and preparation method for oxygen nanobubbles for drug delivery and ultrasound imaging applications[J]. Nanomaterials (Basel), 2019, 9(1): 48.
16
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 1041-1060.
17
Wijaya A , Maruf A , Wu W, et al. Recent advances in micro- and nano-bubbles for atherosclerosis applications[J]. Biomater Sci, 2020, 8(18): 4920-4939.
18
Hansen HHWB, Cha H, Ouyang L, et al. Nanobubble technologies: applications in therapy from molecular to cellular level[J]. Biotechnol Adv, 2023, 63: 108091.
19
Tang J, Liu Y, Li M, et al. Sphingosine‐1‐Phosphate Receptor Targeted PLGA Nanobubbles for Inflammatory Vascular Endothelial Cell Catching[J]. Adv Healthc Mater, 2023, 12(28): e2301407.
20
Macor P, Durigutto P, Argenziano M, et al. Plasminogen activator-coated nanobubbles targeting cellbound beta2-glycoprotein I as a novel thrombus-specific thrombolytic strategy[J]. Haematologica, 2023, 108(7): 1861-1872.
21
Liu Y, Xie Q, Ma Y, et al. Nanobubbles containing PD-L1 Ab and miR-424 mediated PD-L1 blockade, and its expression inhibition to enable and potentiate hepatocellular carcinoma immunotherapy in mice[J]. Int J Pharm, 2022, 629: 122352.
22
Yano Y, Hamano N, Haruta K, et al. Development of an antibody delivery method for cancer treatment by combining ultrasound with therapeutic antibody-modified nanobubbles using fc-binding polypeptide[J]. Pharmaceutics, 2022, 15(1): 130.
23
Capolla S, Argenziano M, Bozzer S, et al. Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models[J]. Front Immunol, 2023, 14: 1200310.
24
Ghasemzadeh T, Hasannia M, Abnous K, et al. Preparation of targeted theranostic red blood cell membranes-based nanobubbles for treatment of colon adenocarcinoma[J]. Expert Opinion on Drug Delivery, 2022, 20(1): 131-143.
25
Das BC, Chokkalingam P, Masilamani P, et al. Stimuli-responsive boron-based materials in drug delivery[J]. Int J Mol Sci, 2023, 24(3): 2757.
26
Batty CJ, Bachelder EM, Ainslie KM. Historical perspective of clinical nano and microparticle formulations for delivery of therapeutics[J]. Trends Mol Med, 2021, 27(6): 516-519.
27
Chen L, Hong W, Ren W, et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles[J]. Signal Transduct Target Ther, 2021, 6(1): 225.
28
Ou LC, Zhong S, Ou JS, et al. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis[J]. Acta Pharmacol Sin, 2021, 42(1): 10-17.
29
Chen J, Zhang X, Millican R, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis[J]. Adv Drug Deliv Rev, 2021, 170: 142-199.
30
Talev J, Kanwar JR. Iron oxide nanoparticles as imaging and therapeutic agents for atherosclerosis[J]. Semin Thromb Hemost, 2020, 46(5): 553-562.
31
Oumzil K, Ramin MA, Lorenzato C, et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis[J]. Bioconjug Chem, 2016, 27(3): 569-575.
32
Zhou H, You P, Liu H, et al. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux[J]. J Control Release, 2022, 341: 828-843.
33
Zhang X, Misra SK, Moitra P, et al. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis[J]. Autophagy, 2023, 19(3): 886-903.
34
Dash R, Yadav M, Biswal J, et al. Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis[J]. Int J Pharm, 2023, 640: 123009.
35
Matus MF, Vilos C, Cisterna BA, et al. Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses[J]. Vascul Pharmacol, 2018, 101: 1-8.
36
Zhang M, Du Y, Wang S, et al. A review of biomimetic nanoparticle drug delivery systems based on cell membranes[J]. Drug Des Devel Ther, 2020, 14: 5495-5503.
37
Liu Y, Rao P, Qian H, et al. Regulatory fibroblast-like synoviocytes cell membrane coated nanoparticles: A novel targeted therapy for rheumatoid arthritis[J]. Adv Sci (Weinh), 2023, 10(4): e2204998.
38
Zhang G, Yao M, Ma S, et al. Application of cell membrane-functionalized biomimetic nanoparticles in the treatment of glioma[J]. J Mater Chem B, 2023, 11(30): 7055-7068.
39
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy[J]. Colloids Surf B Biointerfaces, 2022, 220: 112895.
40
Wu G, Zhang J, Zhao Q, et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment[J]. Angew Chem Int Ed Engl, 2020, 59(10): 4068-4074.
41
Perdomo L, Vidal-Gómez X, Soleti R, et al. Large extracellular vesicle-associated rap1 accumulates in atherosclerotic plaques, correlates with vascular risks and is involved in atherosclerosis[J]. Circ Res, 2020, 127(6): 747-760.
42
Ai X, Hu M, Wang Z, et al. Recent advances of membrane-cloaked nanoplatforms for biomedical applications[J]. bioconjug chem, 2018, 29(4): 838-851.
43
Chen BQ, Zhao Y, Zhang Y, et al. Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy[J]. Bioact Mater, 2023, 21: 1-19.
44
Wu Y, Wan S, Yang S, et al. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment[J]. J Nanobiotechnology, 2022, 20(1): 542.
45
Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines[J]. Nat Commun, 2020, 11(1): 2622.
46
Sha X, Dai Y, Chong L, et al. Pro-efferocytic macrophage membrane biomimetic nanoparticles for the synergistic treatment of atherosclerosis via competition effect[J]. J Nanobiotechnology, 2022, 20(1): 506.
47
Wang Y, Zhang K, Li T, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications[J]. Theranostics, 2021, 11(1): 164-180.
48
Dehaini D, Wei X, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Advanced Materials, 2017, 29(16): 10.
49
Ma B, Xu H, Wang Y, et al. Biomimetic-coated nanoplatform with lipid-specific imaging and ROS responsiveness for atherosclerosis-targeted theranostics[J]. ACS Appl Mater Interfaces, 2021, 13(30): 35410-35421.
50
Hu X, Zhao P, Zhang J, et al. Ultrasound-assisted biomimetic nanobubbles for targeted treatment of atherosclerosis[J]. Nanomedicine, 2023, 51: 102682.
51
Huang R, Zhang L, Li X, et al. Anti-CXCR2 antibody-coated nanoparticles with an erythrocyte-platelet hybrid membrane layer for atherosclerosis therapy[J]. J Control Release, 2023, 356: 610-622.
[1] 马艳波, 华扬, 刘桂梅, 孟秀峰, 崔立平. 中青年人颈动脉粥样硬化病变的相关危险因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 822-826.
[2] 陈荣, 钟鑫, 谭平, 张朋. 以阵发性腰痛、血尿、高血压为表现的右肾转移性副神经节瘤一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 172-174.
[3] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[4] 邓新军, 李正明, 李文彬. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发恶性肿瘤并发于肺癌并脑转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 114-117.
[5] 宋燕京, 乔江春, 宋京海. 中晚期肝癌TACE联合免疫靶向转化治疗后右半肝切除术一例[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 227-230.
[6] 张占国. 靶向免疫治疗时代的肝癌肝切除术再思考[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 11-15.
[7] 张宇, 余灵祥, 杨永平, 赵德希, 刁广浩, 杨木易, 赵亮, 刘佳, 李鹏, 张宁, 任辉. 原发性肝癌Ⅲa期降期后肝切除临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 78-82.
[8] 严帅, 岳志强, 赵江华, 陈琳, 吴金柱. 初始不可切除肝癌患者靶向免疫联合治疗后手术切除临床疗效[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 83-87.
[9] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[10] 吴晨瑞, 廖锐, 贺强, 潘龙, 黄平, 曹洪祥, 赵益, 王永琛, 黄俊杰, 孙睿锐. MDT模式下肝动脉灌注化疗联合免疫靶向治疗肝细胞癌多处转移一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 713-716.
[11] 汤峥丽, 王芳, 王唯坚. 中老年人群幽门螺杆菌感染对非酒精性脂肪肝及冠状动脉粥样硬化影响的关联性分析[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 137-140.
[12] 张洪, 王宏宇. 神经酰胺与心脏和血管疾病关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(11): 1202-1205.
[13] 王林源, 熊鑫, 杨坤, 邓勇志. 基于冠状动脉CT血管成像的影像组学列线图鉴别诊断易损斑块的价值[J]. 中华诊断学电子杂志, 2024, 12(01): 1-8.
[14] 曾德阳, 董贺千禧, 陶凉, 肖红艳, 曾燕, 鄢华. 中年心血管危险因素增加阿尔茨海默病相关痴呆的流行病学和机制研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 6-13.
[15] 陈绚, 欧宁江, 叶洁梅, 邓瑾倩. 纤维蛋白原β链启动因子基因多态性与颈动脉粥样硬化斑块稳定性的关联性研究[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 33-39.
阅读次数
全文


摘要