1 |
王增武, 刘静, 李建军, 等. 中国血脂管理指南(2023年)[J]. 中国循环杂志, 2023, 38(3): 237-271.
|
2 |
Fan J, Watanabe T. Atherosclerosis: known and unknown[J]. Pathol Int, 2022, 72(3): 151-160.
|
3 |
Lankala CR, Yasir M, Ishak A, et al. Application of nanotechnology for diagnosis and drug delivery in atherosclerosis: A new horizon of treatment[J]. Curr Probl Cardiol, 2023, 48(6): 101671.
|
4 |
Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles[J]. Nat Rev Clin Oncol, 2023, 20(1): 33-48.
|
5 |
Lee YJ, Cho JY, You SC, et al. Moderate-intensity statin with ezetimibe vs. high-intensity statin in patients with diabetes and atherosclerotic cardiovascular disease in the RACING trial[J]. Eur Heart J, 2023, 44(11): 972-983.
|
6 |
Wang C, Niimi M, Watanabe T, et al. Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries[J]. Atherosclerosis, 2018 , 277: 136-144.
|
7 |
Huang YW, Zhang M, Wang LT, et al. 20(S)-Protopanaxadiol decreases atherosclerosis in ApoE KO mice by increasing the levels of LDLR and inhibiting its binding with PCSK9[J]. Food Funct, 2022, 13(13): 7020-7028.
|
8 |
Diao H, Cheng J, Huang X, et al. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against atherosclerosis by suppressing EndMT via modulating Akt1/beta-catenin signaling pathway[J]. J Ethnopharmacol, 2022, 293: 115261.
|
9 |
Wang Y, Xu Y, Xu X, et al. Ginkgo biloba extract ameliorates atherosclerosis via rebalancing gut flora and microbial metabolism[J]. Phytother Res, 2022, 36(6): 2463-2480.
|
10 |
Zhi W, Liu Y, Wang X, et al. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis[J]. J Ethnopharmacol, 2023, 301: 115749.
|
11 |
Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: Are we there yet?[J]. Int J Mol Sci, 2020, 22(1): 385.
|
12 |
胡琼, 凌文武, 赵宇亮. 超声技术在肾疾病诊疗中的应用[J/OL]. 中华临床医师杂志(电子版), 2020, 14(2): 136-139.
|
13 |
李二晶, 荆慧. 超声纳米微泡造影剂在肿瘤诊疗中的研究进展[J]. 现代肿瘤医学, 2021, 29(24): 4410-4413.
|
14 |
王婷婷, 于莉莉, 周阳, 等. 纳米技术在动脉粥样硬化治疗中最新进展[J]. 中华老年心脑血管病杂志, 2023, 25(6): 658-660.
|
15 |
Khan MS, Hwang J, Lee K, et al. Surface composition and preparation method for oxygen nanobubbles for drug delivery and ultrasound imaging applications[J]. Nanomaterials (Basel), 2019, 9(1): 48.
|
16 |
Ding D, Zhu Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 1041-1060.
|
17 |
Wijaya A , Maruf A , Wu W, et al. Recent advances in micro- and nano-bubbles for atherosclerosis applications[J]. Biomater Sci, 2020, 8(18): 4920-4939.
|
18 |
Hansen HHWB, Cha H, Ouyang L, et al. Nanobubble technologies: applications in therapy from molecular to cellular level[J]. Biotechnol Adv, 2023, 63: 108091.
|
19 |
Tang J, Liu Y, Li M, et al. Sphingosine‐1‐Phosphate Receptor Targeted PLGA Nanobubbles for Inflammatory Vascular Endothelial Cell Catching[J]. Adv Healthc Mater, 2023, 12(28): e2301407.
|
20 |
Macor P, Durigutto P, Argenziano M, et al. Plasminogen activator-coated nanobubbles targeting cellbound beta2-glycoprotein I as a novel thrombus-specific thrombolytic strategy[J]. Haematologica, 2023, 108(7): 1861-1872.
|
21 |
Liu Y, Xie Q, Ma Y, et al. Nanobubbles containing PD-L1 Ab and miR-424 mediated PD-L1 blockade, and its expression inhibition to enable and potentiate hepatocellular carcinoma immunotherapy in mice[J]. Int J Pharm, 2022, 629: 122352.
|
22 |
Yano Y, Hamano N, Haruta K, et al. Development of an antibody delivery method for cancer treatment by combining ultrasound with therapeutic antibody-modified nanobubbles using fc-binding polypeptide[J]. Pharmaceutics, 2022, 15(1): 130.
|
23 |
Capolla S, Argenziano M, Bozzer S, et al. Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models[J]. Front Immunol, 2023, 14: 1200310.
|
24 |
Ghasemzadeh T, Hasannia M, Abnous K, et al. Preparation of targeted theranostic red blood cell membranes-based nanobubbles for treatment of colon adenocarcinoma[J]. Expert Opinion on Drug Delivery, 2022, 20(1): 131-143.
|
25 |
Das BC, Chokkalingam P, Masilamani P, et al. Stimuli-responsive boron-based materials in drug delivery[J]. Int J Mol Sci, 2023, 24(3): 2757.
|
26 |
Batty CJ, Bachelder EM, Ainslie KM. Historical perspective of clinical nano and microparticle formulations for delivery of therapeutics[J]. Trends Mol Med, 2021, 27(6): 516-519.
|
27 |
Chen L, Hong W, Ren W, et al. Recent progress in targeted delivery vectors based on biomimetic nanoparticles[J]. Signal Transduct Target Ther, 2021, 6(1): 225.
|
28 |
Ou LC, Zhong S, Ou JS, et al. Application of targeted therapy strategies with nanomedicine delivery for atherosclerosis[J]. Acta Pharmacol Sin, 2021, 42(1): 10-17.
|
29 |
Chen J, Zhang X, Millican R, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis[J]. Adv Drug Deliv Rev, 2021, 170: 142-199.
|
30 |
Talev J, Kanwar JR. Iron oxide nanoparticles as imaging and therapeutic agents for atherosclerosis[J]. Semin Thromb Hemost, 2020, 46(5): 553-562.
|
31 |
Oumzil K, Ramin MA, Lorenzato C, et al. Solid lipid nanoparticles for image-guided therapy of atherosclerosis[J]. Bioconjug Chem, 2016, 27(3): 569-575.
|
32 |
Zhou H, You P, Liu H, et al. Artemisinin and Procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux[J]. J Control Release, 2022, 341: 828-843.
|
33 |
Zhang X, Misra SK, Moitra P, et al. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis[J]. Autophagy, 2023, 19(3): 886-903.
|
34 |
Dash R, Yadav M, Biswal J, et al. Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis[J]. Int J Pharm, 2023, 640: 123009.
|
35 |
Matus MF, Vilos C, Cisterna BA, et al. Nanotechnology and primary hemostasis: Differential effects of nanoparticles on platelet responses[J]. Vascul Pharmacol, 2018, 101: 1-8.
|
36 |
Zhang M, Du Y, Wang S, et al. A review of biomimetic nanoparticle drug delivery systems based on cell membranes[J]. Drug Des Devel Ther, 2020, 14: 5495-5503.
|
37 |
Liu Y, Rao P, Qian H, et al. Regulatory fibroblast-like synoviocytes cell membrane coated nanoparticles: A novel targeted therapy for rheumatoid arthritis[J]. Adv Sci (Weinh), 2023, 10(4): e2204998.
|
38 |
Zhang G, Yao M, Ma S, et al. Application of cell membrane-functionalized biomimetic nanoparticles in the treatment of glioma[J]. J Mater Chem B, 2023, 11(30): 7055-7068.
|
39 |
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy[J]. Colloids Surf B Biointerfaces, 2022, 220: 112895.
|
40 |
Wu G, Zhang J, Zhao Q, et al. Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment[J]. Angew Chem Int Ed Engl, 2020, 59(10): 4068-4074.
|
41 |
Perdomo L, Vidal-Gómez X, Soleti R, et al. Large extracellular vesicle-associated rap1 accumulates in atherosclerotic plaques, correlates with vascular risks and is involved in atherosclerosis[J]. Circ Res, 2020, 127(6): 747-760.
|
42 |
Ai X, Hu M, Wang Z, et al. Recent advances of membrane-cloaked nanoplatforms for biomedical applications[J]. bioconjug chem, 2018, 29(4): 838-851.
|
43 |
Chen BQ, Zhao Y, Zhang Y, et al. Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy[J]. Bioact Mater, 2023, 21: 1-19.
|
44 |
Wu Y, Wan S, Yang S, et al. Macrophage cell membrane-based nanoparticles: a new promising biomimetic platform for targeted delivery and treatment[J]. J Nanobiotechnology, 2022, 20(1): 542.
|
45 |
Gao C, Huang Q, Liu C, et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines[J]. Nat Commun, 2020, 11(1): 2622.
|
46 |
Sha X, Dai Y, Chong L, et al. Pro-efferocytic macrophage membrane biomimetic nanoparticles for the synergistic treatment of atherosclerosis via competition effect[J]. J Nanobiotechnology, 2022, 20(1): 506.
|
47 |
Wang Y, Zhang K, Li T, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications[J]. Theranostics, 2021, 11(1): 164-180.
|
48 |
Dehaini D, Wei X, Fang RH, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization[J]. Advanced Materials, 2017, 29(16): 10.
|
49 |
Ma B, Xu H, Wang Y, et al. Biomimetic-coated nanoplatform with lipid-specific imaging and ROS responsiveness for atherosclerosis-targeted theranostics[J]. ACS Appl Mater Interfaces, 2021, 13(30): 35410-35421.
|
50 |
Hu X, Zhao P, Zhang J, et al. Ultrasound-assisted biomimetic nanobubbles for targeted treatment of atherosclerosis[J]. Nanomedicine, 2023, 51: 102682.
|
51 |
Huang R, Zhang L, Li X, et al. Anti-CXCR2 antibody-coated nanoparticles with an erythrocyte-platelet hybrid membrane layer for atherosclerosis therapy[J]. J Control Release, 2023, 356: 610-622.
|