切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 283 -294. doi: 10.3877/cma.j.issn.1674-0785.2024.03.008

基础研究

不同状态下SAP2和STP1在白念珠菌伊曲康唑耐药中的作用
虞岱瑶1, 冯文莉1,()   
  1. 1. 030001 山西太原,山西医科大学第二临床医学院皮肤科
  • 收稿日期:2024-05-01 出版日期:2024-03-15
  • 通信作者: 冯文莉
  • 基金资助:
    国家自然基金面上项目(82072262)

Study on the effect of SAP2 and STP1 in Itraconazole resistance of Candida albicans under different states

Daiyao Yu1, Wenli Feng1,()   

  1. 1. Department of Dermatology and Venereology, Second Clinical Medical College, Shanxi Medical University, Taiyuan 030009, China
  • Received:2024-05-01 Published:2024-03-15
  • Corresponding author: Wenli Feng
引用本文:

虞岱瑶, 冯文莉. 不同状态下SAP2和STP1在白念珠菌伊曲康唑耐药中的作用[J]. 中华临床医师杂志(电子版), 2024, 18(03): 283-294.

Daiyao Yu, Wenli Feng. Study on the effect of SAP2 and STP1 in Itraconazole resistance of Candida albicans under different states[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(03): 283-294.

目的

探讨游离状态和生物膜状态下,毒力因子SAP2、转录因子STP1在临床分离白念珠菌伊曲康唑(ITR)耐药中的作用及其相互关系。

方法

实验菌株为临床分离伊曲康唑耐药白念珠菌菌株和敏感菌株各10株。首先,采用PCR方法对游离状态下临床分离白念珠菌伊曲康唑耐药和敏感菌株的SAP2、STP1进行测序,分析基因突变与耐药的关系;之后,利用96孔板构建白念珠菌生物膜;采用RT-PCR方法检测游离状态和生物膜状态下白念珠菌SAP2、STP1、STP1Δ/Δ的mRNA表达水平,比较分析不同状态下SAP2、STP1、STP1Δ/Δ的表达是否具有差异和相关性;进一步通过结晶紫染色法和激光共聚焦显微镜观察白念珠菌生物膜在各时间点的生长形态以及SAP2、STP1、STP1Δ/Δ对其形成能力的影响。

结果

SAP2测序显示无错义突变,存在3个同义突变(T276A、G543A和A675C);STP1基因测序发现两个错义突变N394S和D71I,以及2个同义突变C453T、A799G,其中N394S在全部耐药和敏感菌株中都存在,而D71I仅存在于两株敏感菌株中。与敏感菌株相比,白念珠菌耐药菌株和STP1基因缺陷菌株(STP1Δ/Δ)的生物膜形成能力更强;耐药菌株在游离状态和生物膜状态下SAP2和STP1的表达均上调(P<0.05),并且与游离状态相比,耐药菌株和敏感菌株在生物膜状态下二者的表达量均显著升高(P<0.05)。而无论在何种状态下,SAP2和STP1的mRNA表达水平均呈显著正相关。此外,与标准菌株ATCC11006相比,STP1基因缺陷菌株(STP1Δ/Δ)中的SAP2表达在两种状态下也显著上调,差异具有统计学意义(P<0.05)。

结论

生物膜的形成可以使白念珠菌伊曲康唑耐药性增加,但SAP2、STP1基因突变可能与其耐药性无关;游离状态下,SAP2的高表达与白念珠菌ITR的耐药性有关,而无论在游离状态还是生物膜状态下,白念珠菌对ITR的耐药性增加均与STP1有关。此外,STP1对SAP2是具有调控作用的,其机制亟待研究。

Objective

To investigate the role and relationship of virulence factor SAP2 and transcription factor STP1 in itraconazole (ITR) resistance of Candida albicans in free state and biofilm state.

Methods

The experimental strains were 10 itraconazole-resistant Candida albicans and 10 sensitive strains. Firstly, the SAP2 and STP1 of itraconazole-resistant and sensitive strains of Candida albicans isolated in free state were sequenced by PCR method, and the relationship between gene mutation and drug resistance was analyzed. Then, the biofilm of Candida albicans was constructed by 96-well plate. The mRNA expression levels of SAP2, STP1 and STP1Δ/Δ of Candida albicans in free state and biofilm state were detected by RT-PCR method, and the differences and correlation of SAP2, STP1 and STP1Δ/Δ expression in different states were compared and analyzed. The growth morphology of Candida albicans biofilm at different time points and the effects of SAP2, STP1 and STP1Δ/Δ on its formation ability were observed by crystal violet staining and laser confocal microscope.

Results

SAP2 sequencing showed that there were no missense mutations with three synonymous mutations (T276A, G543A and A675C), two missense mutations N394S (20) and D71I (2) and two synonymous mutations C453T (4) and A799G (1) were found in STP1 gene sequencing, among which N394S existed in all drug resistant and sensitive strains, while D71I only existed in two sensitive strains. Compared with sensitive strains, Candida albicans resistant strains and STP1 gene deficient strains (STP1Δ/Δ) had stronger biofilm forming ability, and the expressions of SAP2 and STP1 were up-regulated in free state and biofilm state, and the expression levels of SAP2 and STP1 in biofilm state were significantly higher in resistant and sensitive strains than in free state. However, there was a significant positive correlation between the mRNA expression levels of SAP2 and STP1 under any condition. In addition, compared with the standard strain ATCC11006, the expression of SAP2 in the STP1 gene deficient strain (STP1Δ/Δ) was also significantly up-regulated under the two states, and the difference was statistically significant.

Conclusion

The formation of biofilm can increase the itraconazole resistance of Candida albicans, but the mutations of SAP2 and STP1 genes may not be related to the drug resistance of Candida albicans. In free state, the high expression of SAP2 is related to the drug resistance of Candida albicans ITR, while in both free state and biofilm state, the increase of ITR resistance of Candida albicans is related to STP1. In addition, STP1 can regulate and control SAP2, and its mechanism needs to be studied urgently.

表1 实验用主要试剂
表2 实验用主要仪器设备
表3 体外抗真菌药物敏感性试验参考范围
表4 生物膜形成能力判读标准
表5 聚合酶链式反应和实时定量聚合酶链式反应(RT-qPCR)的所有引物序列
表6 菌株体外药敏试验结果(单位:μg/ml)
表7 C. albicans SAP2基因中发生碱基突变和氨基酸置换
表8 C. albicans STP1基因中发生碱基突变和氨基酸置换
图1 倒置显微镜下(20×10倍)观察不同时间点白念珠菌生物膜生长情况。图a为结晶紫染色观察耐药菌株生物膜1 h形态特点,图b为结晶紫染色观察敏感菌株生物膜1 h形态特点,图c为结晶紫染色观察耐药菌株生物膜12 h形态特点,图d为结晶紫染色观察敏感菌株生物膜12 h形态特点,图e为结晶紫染色观察耐药菌株生物膜24 h形态特点,图f为结晶紫染色观察敏感菌株生物膜24 h形态特点,图g为结晶紫染色观察耐药菌株生物膜48 h形态特点,图h为结晶紫染色观察敏感菌株生物膜48 h形态特点
图2 激光共聚焦显微镜下(20×10倍)观察白念珠菌在1 h、12 h、24 h和48 h的生物膜生长情况。图A组为激光共聚焦观察生物膜1 h形态特点;图B组激光共聚焦观察生物膜12 h形态特点;图C组为激光共聚焦观察生物膜24 h形态特点;图D组为激光共聚焦观察生物膜48 h形态特点,a为标准菌株;b为耐药菌株;c为敏感菌株;d为STP1Δ/Δ菌株
表9 生物膜形成能力结果判读
图3 标准菌株与STP1Δ/Δ菌株生物膜形成能。*P<0.05
图4 耐药菌株与敏感菌株生物膜形成能力。***P<0.001
图5 游离状态下敏感与耐药菌株组SAP2与STP1表达水平。*P<0.05
图6 生物膜状态下敏感与耐药菌株组SAP2与STP1表达水平。ns P>0.05,**P<0.01
图7 不同状态下临床分离白念珠菌SAP2表达水平(左为耐药组,右为敏感组)。***P<0.001
图8 不同状态下临床分离白念珠菌STP1表达水平(左为耐药组,右为敏感组)。***P<0.001,**P<0.01
图9 不同状态下临床分离白念珠菌SAP2与STP1表达水平(耐药组和敏感组共同对比,即N=20)。***P<0.001
表10 临床分离白念珠菌在游离和生物膜状态下SAP2和STP1的相关性
图10 图a为游离状态下ATCC11006和STP1Δ/Δ菌株的SAP2的表达水平;图b为生物膜状态下ATCC11006和STP1Δ/Δ菌株的SAP2的表达水平;图c为不同状态下STP1Δ/Δ菌株的SAP2表达水平。*P<0.05
1
Kritikos A, Neofytos D, Khanna N, et al. Accuracy of sensititre yeastone echinocandins epidemiological cut-off values for identification of FKS mutant candida albicans and candida glabrata: a ten year national survey of the fungal infection network of switzerland (Funginos) [J]. Clin Microbiol Infect, 2018,24(11): 1211-1214.
2
Pfaller MA, Diekema DJ, Turnidge JD, et al. Twenty years of the sentry antifungal surveillance program: results for candida species from 1997-2016 [J]. Open Forum Infect Dis, 2019,6(Suppl 1): S79-S94.
3
Pathakumari B, Liang G, Liu W. Immune defence to invasive fungal infections: A comprehensive review [J]. Biomed Pharmacother, 2020,130: 110550.
4
Dhanasekaran S, Pushparaj S P, Sundar M S, et al. Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: a molecular dynamics approach [J]. J Biomol Struct Dyn, 2023: 1-15.
5
Fang J, Huang B, Ding Z. Efficacy of antifungal drugs in the treatment of oral candidiasis: a bayesian network meta-analysis [J]. J Prosthet Dent, 2021,125(2): 257-265.
6
Jain T, Mishra P, Kumar S, et al. Molecular dissection studies of TAC1, a transcription activator of candida drug resistance genes of the human pathogenic fungus candida albicans [J]. Front Microbiol, 2023,14: 994873.
7
Feng W, Yang J, Ma Y, et al. The effects of secreted aspartyl proteinase inhibitor ritonavir on azoles-resistant strains of Candida albicans as well as regulatory role of SAP2 and ERG11 [J]. Immun Inflamm Dis, 2021,9(3): 667-680.
8
Belmadani A, Semlali A, Rouabhia M. Dermaseptin-S1 decreases candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes [J]. J Appl Microbiol, 2018,125(1): 72-83.
9
Lin L, Wang M, Zeng J, et al. Sequence variation of candida albicans sap2 enhances fungal pathogenicity via complement evasion and macrophage M2-like phenotype induction [J]. Adv Sci (Weinh), 2023,10(20): e2206713.
10
Sharma A, Solis N V, Huang M Y, et al. Hgc1 independence of biofilm hyphae in candida albicans [J]. mBio, 2023,14(2): e349822.
11
Tan Y, Lin Q, Yao J, et al. In vitro outcomes of quercetin on candida albicans planktonic and biofilm cells and in vivo effects on vulvovaginal candidiasis. Evidences of its mechanisms of action [J]. Phytomedicine, 2023,114: 154800.
12
Feng W, Yang J, Ma Y, et al. Correlation between SAP2 and CAP1 in clinical strains of Candida albicans at planktonic and biofilm states [J]. Can J Microbiol, 2022,68(12): 722-730.
13
Ardizzoni A, Wheeler R T, Pericolini E. It takes two to tango: How a dysregulation of the innate immunity, coupled with candida virulence, Triggers VVC Onset [J]. Front Microbiol, 2021,12: 692491.
14
Corral-Ramos C, Barrios R, Ayte J, et al. TOR and MAP kinase pathways synergistically regulate autophagy in response to nutrient depletion in fission yeast [J]. Autophagy, 2022,18(2): 375-390.
15
Clsi CALS. Performance standards for antifungal susceptibility testing of yeasts, 1st Edn [S]. 2018.
16
Tavanti A, Hensgens LA, Mogavero S, et al. Genotypic and phenotypic properties of Candida parapsilosis sensu strictu strains isolated from different geographic regions and body sites [J]. BMC Microbiol, 2010,10: 203.
17
Miao J, Regan J, Cai C, et al. Glycogen metabolism in candida albicans impacts fitness and virulence during vulvovaginal and invasive candidiasis [J]. mBio, 2023,14(2): e4623.
18
Gerges MA, Fahmy YA, Hosny T, et al. Biofilm formation and aspartyl proteinase activity and their association with azole resistance among candida albicans causing vulvovaginal candidiasis, Egypt [J]. Infect Drug Resist, 2023,16: 5283-5293.
19
Miramon P, Lorenz M C. The SPS amino acid sensor mediates nutrient acquisition and immune evasion in candida albicans [J]. Cell Microbiol, 2016,18(11): 1611-1624.
20
Lohse MB, Brenes LR, Ziv N, et al. An opaque cell-specific expression program of secreted proteases and transporters allows cell-type cooperation in candida albicans [J]. Genetics, 2020,216(2): 409-429.
21
Li Y, Huang S, Du J, et al. Current and prospective therapeutic strategies: tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm [J]. Front Cell Infect Microbiol, 2023,13: 1106231.
22
Branco J, Miranda IM, Rodrigues AG. Candida parapsilosis virulence and antifungal resistance mechanisms: a comprehensive review of key determinants [J]. J Fungi (Basel), 2023,9(1): 80.
23
Kaur J, Nobile CJ. Antifungal drug-resistance mechanisms in candida biofilms [J]. Curr Opin Microbiol, 2023,71: 102237.
24
董行, 郎东浩, 符雪, 等. 群体感应系统与生物膜耐药机制的研究现状 [J/OL]. 中华临床医师杂志(电子版), 2021,15(1): 57-60.
25
Feng W, Yang J, Ma Y, et al. Relationships between secreted aspartyl proteinase 2 and general control nonderepressible 4 gene in the candida albicans resistant to itraconazole under planktonic and biofilm conditions [J]. Braz J Microbiol, 2023,54(2): 619-627.
26
Mare AD, Man A, Ciurea CN, et al. Silver nanoparticles biosynthesized with spruce bark extract-a molecular aggregate with antifungal activity against candida species [J]. Antibiotics (Basel), 2021,10(10): 1261.
27
Miramón P, Pountain AW, van Hoof A, et al. The paralogous transcription factors stp1 and stp2 of candida albicans have distinct functions in nutrient acquisition and host interaction [J]. Infect Immun, 2020,88(5): e00763-e00819.
28
Böttcher B, Hoffmann B, Garbe E, et al. The transcription factor stp2 is important for candida albicans biofilm establishment and sustainability [J]. Front Microbiol, 2020,11: 794.
29
Miramón P, Pountain AW, van Hoof A, et al. The paralogous transcription factors stp1 and stp2 of candida albicans have distinct functions in nutrient acquisition and host interaction [J]. Infect Immun, 2020,88(5): e00763-19.
30
Pfirrmann T, Heessen S, Omnus D J, et al. The prodomain of Ssy5 protease controls receptor-activated proteolysis of transcription factor Stp1 [J]. Mol Cell Biol, 2010,30(13): 3299-3309.
[1] 苟苗苗, 张勇, 千年松, 司海燕, 高云鹤, 陈凛, 戴广海. DPYD、ABCB1、GSTP1、ERCC1基因多态性与晚期结肠癌临床特征、不良反应、预后的关系[J]. 中华结直肠疾病电子杂志, 2019, 08(02): 125-130.
阅读次数
全文


摘要