切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 355 -362. doi: 10.3877/cma.j.issn.1674-0785.2024.04.004

临床研究

基于自动乳腺超声的列线图模型早期预测HER-2阳性乳腺癌新辅助化疗病理完全缓解的临床价值
赵阳1, 肖迎聪2, 巨艳3, 党晓智3, 蔡林利2, 薛文欣3, 李洋3, 肖瑶3, 郭妤绮3, 宋宏萍3,()   
  1. 1. 710032 西安,空军军医大学第一附属医院(西京医院)超声医学科;712046 陕西 咸阳,陕西中医药大学医学技术学院
    2. 712046 陕西 咸阳,陕西中医药大学医学技术学院
    3. 710032 西安,空军军医大学第一附属医院(西京医院)超声医学科
  • 收稿日期:2024-01-17 出版日期:2024-04-15
  • 通信作者: 宋宏萍
  • 基金资助:
    国家自然科学基金面上项目(82071934); 陕西省科技计划项目国合重点项目(2020KWZ-022); 陕西省高等教育教学改革研究重点项目(21JZ009); 空军军医大学临床研究项目(2021LC2210)

Clinical value of a nomogram model based on automated breast ultrasound in early prediction of pathological complete response to neoadjuvant chemotherapy in HER-2 positive breast cancer

Yang Zhao1, Yingcong Xiao2, Yan Ju3, Xiaozhi Dang3, Linli Cai2, Wenxin Xue3, Yang Li3, Yao Xiao3, Yuqi Guo3, Hongping Song3,()   

  1. 1. Department of Ultrasound Medicine, The First Affiliated Hospital of Air Force Military Medical University (Xijing Hospital), Xi'an 710032, China;Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
    2. Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China
    3. Department of Ultrasound Medicine, The First Affiliated Hospital of Air Force Military Medical University (Xijing Hospital), Xi'an 710032, China
  • Received:2024-01-17 Published:2024-04-15
  • Corresponding author: Hongping Song
引用本文:

赵阳, 肖迎聪, 巨艳, 党晓智, 蔡林利, 薛文欣, 李洋, 肖瑶, 郭妤绮, 宋宏萍. 基于自动乳腺超声的列线图模型早期预测HER-2阳性乳腺癌新辅助化疗病理完全缓解的临床价值[J]. 中华临床医师杂志(电子版), 2024, 18(04): 355-362.

Yang Zhao, Yingcong Xiao, Yan Ju, Xiaozhi Dang, Linli Cai, Wenxin Xue, Yang Li, Yao Xiao, Yuqi Guo, Hongping Song. Clinical value of a nomogram model based on automated breast ultrasound in early prediction of pathological complete response to neoadjuvant chemotherapy in HER-2 positive breast cancer[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(04): 355-362.

目的

探讨自动乳腺超声(ABUS)早期预测HER-2阳性乳腺癌患者新辅助化疗(NAC)后获得病理完全缓解(pCR)的临床价值。

方法

回顾性分析2019年3月至2023年5月于空军军医大学附属西京医院乳腺外科收治的248例HER-2阳性女性乳腺癌患者,比较pCR组和非病理完全缓解(npCR)组NAC前各项参数的差异,并行多因素二元Logistic回归分析确定HER-2阳性乳腺癌pCR的独立预测因素,构建基于ABUS特征的列线图预测模型。应用Bootstrap 方法(1000次重抽样)对模型进行内部验证;采用受试者工作特征(ROC)曲线评估模型的区分度,校准曲线评估模型的准确性,临床决策曲线(DCA)评价模型的临床获益。

结果

HER-2阳性乳腺癌NAC前2组肿瘤的ER状态、PR状态、分子亚型、皮肤侵犯、后方回声、冠状面汇聚征、冠状面白墙征比较差异有统计学意义(均P<0.05)。行二元Logistic回归分析显示分子亚型、皮肤侵犯、冠状面汇聚征、冠状面白墙征是HER-2阳性乳腺癌pCR的独立预测因素(均P<0.05)。基于这些变量构建列线图模型,其ROC曲线下面积为0.805(95%CI:0.751~0.859)。Hosmer-Lemeshow检验表明模型良好的拟合度(χ2=6.597,P=0.360)。采用Bootstrap法迭代1000次进行内部验证,平均AUC为0.806(95%CI:0.742~0.855),表明模型稳定性良好,校准曲线表明列线图模型的预测概率与实际概率一致性好,决策曲线(DCA)线显示模型的临床获益及应用价值较高。

结论

基于NAC前肿瘤ABUS特征的列线图模型可以在一定程度上早期准确预测HER-2阳性乳腺癌NAC后pCR,可为乳腺癌患者临床治疗方案的制定提供超声影像依据。

Objective

To assess the clinical usefulness of automated breast ultrasound (ABUS) in predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in HER-2 positive breast cancer patients.

Methods

A retrospective analysis was performed on 248 HER-2 positive female breast cancer patients admitted to the Department of Breast Surgery, Xijing Hospital Affiliated to Air Force Military Medical University from March 2019 to May 2023. The differences in parameters before NAC were compared between patients with pCR and non-pCR (npCR) patients. Multivariate binary Logistic regression analysis was performed to identify the independent predictors of pCR in HER-2 positive breast cancer. Additionally, a nomogram prediction model was developed based on features obtained from ABUS. The Bootstrap method (1000 times of sampling) was used to verify the model internally. Receiver operating characteristic (ROC) curve analysis was employed for assessing the discriminative performance of the model, and decision curve analysis (DCA) was used to evaluate the clinical benefit and application value of the model.

Results

There were significant differences in ER status, PR status, molecular subtype, skin invasion, posterior echo, retraction phenomenon in the coronal plane, and white wall sign in the coronal plane between the the pCR and npCR groups before NAC (P<0.05 for all). Binary Logistic regression analysis showed that molecular subtype, skin invasion, retraction phenomenon in the coronal plane, and white wall sign in the coronal plane were independent predictors of pCR in HER-2 positive breast cancer (P<0.05 for all). A nomogram model was constructed based on these variables, and the area under the ROC curve of this model for predicting pCR in HER-2 positive breast cancer was 0.805 (95% confidence interval [CI]: 0.751~0.859). The Hosmer-Lemeshow test showed that the model had a good fit (χ2=6.597, P=0.360). The calibration curve demonstrated an excellent correspondence between the predicted and observed probabilities of the joint model, thereby indicating its high accuracy and reliability. The Bootstrap method was used to iterate for 1000 times for internal verification, and the calculated average AUC was 0.806 (95%CI: 0.742-0.855), indicating that the model was stable. The DCA showed that the clinical benefit and application value of the model were high.

Conclusion

The nomogram model based on the ABUS features of tumors before NAC can accurately predict the pCR to NAC in HER-2 positive breast cancer to a certain extent, thus providing an ultrasound imaging basis for the formulation of clinical treatment plans for breast cancer patients.

表1 npCR组与pCR组临床病理特征比较
表2 npCR组与pCR组ABUS特征比较
图1 HER-2阳性乳腺癌患者新辅助化疗pCR独立影响因素森林图 注:HER-2为人表皮生长因子受体-2;pCR为病理完全缓解
图2 列线图模型预测pCR的ROC曲线 注:pCR为病理完全缓解
图3 基于分子亚型、皮肤侵犯、冠状面汇聚征、冠状面白墙征构建的列线图 注:分子亚型0、1分别代表HR阴性、HR阳性;皮肤侵犯、冠状面汇聚征、冠状面白墙征的0、1分别代表无、有
图4 列线图模型的校准曲线
图5 列线图模型的DCA曲线 注:DCA为临床决策曲线
图6 患者55岁,女性,浸润性乳腺癌(HR阴性),完全NAC后pCR。图a为ABUS图像显示冠状面白墙象,无冠状面汇聚征和皮肤侵犯;图b为列线图计算总得分为254分(51+70+33+100=254),对应于NAC后pCR率为93% 注:HR为激素受体;NAC为新辅助化疗;pCR为病理完全和缓解;ABUS为自动乳腺超声
4
牟鳄贤, 李卓璇, 董浩, 等. 初始腋窝淋巴结转移乳腺癌新辅助治疗后腋窝病理完全缓解的预测因素分析 [J/OL]. 中华临床医师杂志(电子版), 2023,17(10): 1027-32.
5
Untch M, Fasching PA, Konecny GE, et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: results from the TECHNO trial of the AGO and GBG study groups [J]. J Clin Oncol, 2011,29(25): 3351-3357.
6
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis [J]. Lancet, 2014,384(9938): 164-72.
7
Broglio KR, Quintana M, Foster M, et al. Association of pathologic complete response to neoadjuvant therapy in HER2-positive breast cancer with long-term outcomes: A meta-analysis [J]. JAMA Oncol, 2016,2(6): 751-60.
8
Haque W, Verma V, Hatch S, et al. Response rates and pathologic complete response by breast cancer molecular subtype following neoadjuvant chemotherapy [J]. Breast Cancer Res Treat, 2018,170(3): 559-567.
9
自动乳腺容积超声技术专家共识(2022版) [J]. 中国超声医学杂志, 2022,38(4): 361-336.
10
Allison KH, Hammond MEH, Dowsett M, et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP Guideline Update [J]. J Clin Oncol, 2020,38(12): 1346-1366.
11
Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists cinical practice guideline focused update [J]. Arch Pathol Lab Med, 2018,142(11): 1364-1382.
12
Ogston KN, Miller ID, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival [J]. Breast, 2003,12(5): 320-327.
13
Spear GG, Mendelson EB. Automated breast ultrasound: Supplemental screening for average-risk women with dense breasts [J]. Clin Imaging, 2021,76: 15-25.
14
Huppe AI, Inciardi MF, Aripoli AM, et al. Pearls and pitfalls of interpretation of automated breast US [J]. Radiographics, 2023,43(10): e230023.
15
Li G, Tian ML, Bing YT, et al. Nomograms predict survival outcomes for distant metastatic pancreatic neuroendocrine tumor: A population based STROBE compliant study [J]. Medicine (Baltimore), 2020,99(13): e19593.
16
Sui L, Yan Y, Jiang T, et al. Ultrasound and clinicopathological characteristics-based model for prediction of pathologic response to neoadjuvant chemotherapy in HER2-positive breast cancer: a case-control study [J]. Breast Cancer Res Treat, 2023,202(1): 45-55.
17
Baumgartner A, Tausch C, Hosch S, et al. Ultrasound-based prediction of pathologic response to neoadjuvant chemotherapy in breast cancer patients [J]. Breast, 2018,39: 19-23.
18
Dobruch-Sobczak K, Piotrzkowska-Wróblewska H, Klimonda Z, et al. Ultrasound echogenicity reveals the response of breast cancer to chemotherapy [J]. Clin Imaging, 2019,55: 41-46.
19
Cui H, Zhao D, Han P, et al. Predicting pathological complete response after neoadjuvant chemotherapy in advanced breast cancer by ultrasound and clinicopathological features using a nomogram [J]. Front Oncol, 2021,11: 718531.
20
Xu B, Shen J, Zhang L, et al. HER2 protein expression level is positively associated with the efficacy of neoadjuvant systemic therapy in HER2-positive breast cancer [J]. Pathol Res Pract, 2022,234: 153900.
1
Zeng X, Liu C, Yao J, et al. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications [J]. Pharmacol Res, 2021,163: 105320.
2
Portnow LH, Kochkodan-Self JM, Maduram A, et al. Multimodality imaging review of HER2-positive breast cancer and response to neoadjuvant chemotherapy [J]. Radiographics, 2023,43(2): e220103.
3
Liu Y, Wang Y, Wang Y, et al. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study [J]. EClinicalMedicine, 2022,52: 101562.
21
Ross JS, Slodkowska EA, Symmans WF, et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine [J]. Oncologist, 2009,14(4): 320-368.
22
Harbeck N, Gluz O, Christgen M, et al. De-escalation wtrategies in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (BC): final analysis of the west German sudy group adjuvant dynamic marker-adjusted personalized therapy trial optimizing risk assessment and therapy response prediction in early BC HER2- and hormone teceptor-positive phase II randomized trial-efficacy, safety, and predictive markers for 12 weeks of neoadjuvant trastuzumab emtansine with or without endocrine therapy (ET) Vversus trastuzumab plus ET [J]. J Clin Oncol, 2017,35(26): 3046-3054.
23
郭俏丽, 宋庆志, 胡慧. 不同类型乳腺癌新辅助化疗疗效评价及预后影响因素分析 [J/OL]. 中华临床医师杂志(电子版), 2021,15(10): 754-759.
24
Jiang J, Chen YQ, Xu YZ, et al. Correlation between three-dimensional ultrasound features and pathological prognostic factors in breast cancer [J]. Eur Radiol, 2014,24(6): 1186-1196.
25
Chang CY, Kuo SJ, Wu HK, et al. Stellate masses and histologic grades in breast cancer [J]. Ultrasound Med Biol, 2014,40(5): 904-916.
26
Zheng FY, Lu Q, Huang BJ, et al. Imaging features of automated breast volume scanner: Correlation with molecular subtypes of breast cancer [J]. Eur J Radiol, 2017,86: 267-275.
27
Li N, Jiang YX, Zhu QL, et al. Accuracy of an automated breast volume ultrasound system for assessment of the pre-operative extent of pure ductal carcinoma in situ: comparison with a conventional handheld ultrasound examination [J]. Ultrasound Med Biol, 2013,39(12): 2255-2263.
28
Liang X, Li Z, Zhang L, et al. Application of contrast-enhanced ultrasound in the differential diagnosis of different molecular subtypes of breast cancer [J]. Ultrason Imaging, 2020,42(6): 261-270.
29
Tamaki K, Sasano H, Ishida T, et al. The correlation between ultrasonographic findings and pathologic features in breast disorders [J]. Jpn J Clin Oncol, 2010,40(10): 905-912.
30
Kaoku S, Konishi E, Fujimoto Y, et al. Sonographic and pathologic image analysis of pure mucinous carcinoma of the breast [J]. Ultrasound Med Biol, 2013,39(7): 1158-1167.
31
Bae MS, Shin SU, Song SE, et al. Association between US features of primary tumor and axillary lymph node metastasis in patients with clinical T1-T2N0 breast cancer [J]. Acta Radiol, 2018,59(4): 402-408.
32
Sheikh F, Nazir A, Yasmeen S, et al. Pathologic complete response in HER2-positive breast cancer patients receiving trastuzumab in neoadjuvant setting [J]. J Coll Physicians Surg Pak, 2019,29(2): 159-163.
33
Mazari FAK, Sharma N, Dodwell D, et al. Human epidermal growth factor 2-positive breast cancer with mammographic microcalcification: relationship to pathologic complete response after neoadjuvant chemotherapy [J]. Radiology, 2018,288(2): 366-374.
34
Hou N, Xiao J, Wang Z, et al. Development and validation of a nomogram for individually predicting pathologic complete remission after preoperative chemotherapy in Chinese breast cancer: A population-based study [J]. Clin Breast Cancer, 2020,20(6): e682-e94.
35
唐益勇, 李晓琴, 施燕芸, 等. 超声结合钼靶成像及Ki-67表达对乳腺癌新辅助化疗疗效的预测价值 [J/OL]. 中华医学超声杂志(电子版), 2021,18(6): 564-569.
[1] 赵阳, 肖迎聪, 巨艳, 党晓智, 蔡林利, 薛文欣, 李洋, 肖瑶, 郭妤绮, 宋宏萍. 自动乳腺超声联合免疫组化早期预测乳腺癌新辅助化疗病理完全缓解的临床价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 361-369.
[2] 刘炎东, 李恒宇. 新辅助化疗后乳腺癌局部区域的分期评估和治疗的降阶梯策略[J]. 中华乳腺病杂志(电子版), 2024, 18(03): 146-151.
[3] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[4] 王亚萍, 樊菁, 侯牛牛, 凌瑞. 肿瘤浸润性淋巴细胞在HER-2阳性早期乳腺癌中的临床意义[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 203-209.
[5] 张旺, 曹家兴, 刘九洋, 吴高松. 全身免疫炎症指数对乳腺癌新辅助化疗疗效的预测价值及临床预测模型的构建[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 136-142.
[6] 何欣林, 阎昊铮, 赵亦非, 江彩霞, 李征宇. 新辅助化疗联合间歇性肿瘤细胞减灭术对上皮性卵巢癌患者预后及血清学与影像学指标对患者预后的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(01): 47-57.
[7] 孟宇, 李金超, 刘金来, 刘晨, 王振勇. 新辅助化疗后LPD钩突切除中先动脉后静脉原则的安全性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 251-254.
[8] 祝启路, 邹佳悦, 肖均喜, 侍阳. Easy First策略在新辅助化疗后腹腔镜胰十二指肠切除术中的临床疗效研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 200-203.
[9] 齐立强. 新辅助化疗后左乳腺癌改良根治术[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 257-257.
[10] 黄洪, 徐庆春, 马凯群, 陈麒升, 周奕洲, 李雁锋, 曹思哲, 张永海. 广东省医学会泌尿外科疑难病例多学科会诊(第13期)[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 193-197.
[11] 白中元, 张伟, 王雅婧, 冯永亮, 白文启, 李灵敏. 直肠癌新辅助治疗后病理完全缓解情况及预测因素分析[J]. 中华结直肠疾病电子杂志, 2023, 12(01): 50-55.
[12] 孙伟, 刘敬峰, 陈晨, 杨磊. 奥沙利铂联合卡培他滨新辅助化疗治疗局部进展期低位直肠癌的疗效及影响因素[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 208-212.
[13] 牟鳄贤, 李卓璇, 董浩, 于淼, 纪娟, 徐佳, 王浩, 刘世伟. 初始腋窝淋巴结转移乳腺癌新辅助治疗后腋窝病理完全缓解的预测因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1027-1032.
[14] 赵莉, 张敏伟, 于海侠, 张宇萌, 丰金岭, 李德春. 组织标记夹置入在评估乳腺癌术前新辅助化疗疗效中的应用价值[J]. 中华介入放射学电子杂志, 2024, 12(02): 166-170.
[15] 贾卓奇, 李硕, 陈健, 张广健, 付军科. 新辅助治疗后胸腹腔镜下Ivor-Lewis食管胃结合部腺癌根治术1例并文献复习[J]. 中华胸部外科电子杂志, 2023, 10(02): 111-116.
阅读次数
全文


摘要