切换至 "中华医学电子期刊资源库"

中华临床医师杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 375 -382. doi: 10.3877/cma.j.issn.1674-0785.2024.04.007

基础研究

山奈素通过抑制NF-κB减弱类风湿关节炎大鼠模型软骨细胞炎症及基质降解
魏贤杰1, 黄河溯源1, 张克石1,(), 关振鹏1,()   
  1. 1. 100144 北京,北京大学首钢医院骨科
  • 收稿日期:2024-01-18 出版日期:2024-04-15
  • 通信作者: 张克石, 关振鹏

Kaempferide reduces chondrocyte inflammation and matrix degradation in a rat model of rheumatoid arthritis by inhibiting NF-κB signaling

Xianjie Wei1, Hesuyuan Huang1, Keshi Zhang1,(), Zhenpeng Guan1,()   

  1. 1. Orthopedics Department, Peking University Shougang Hospital, Beijing 100144, China
  • Received:2024-01-18 Published:2024-04-15
  • Corresponding author: Keshi Zhang, Zhenpeng Guan
引用本文:

魏贤杰, 黄河溯源, 张克石, 关振鹏. 山奈素通过抑制NF-κB减弱类风湿关节炎大鼠模型软骨细胞炎症及基质降解[J]. 中华临床医师杂志(电子版), 2024, 18(04): 375-382.

Xianjie Wei, Hesuyuan Huang, Keshi Zhang, Zhenpeng Guan. Kaempferide reduces chondrocyte inflammation and matrix degradation in a rat model of rheumatoid arthritis by inhibiting NF-κB signaling[J]. Chinese Journal of Clinicians(Electronic Edition), 2024, 18(04): 375-382.

目的

探讨山奈素(Kaempferide)对NF-κB通路的影响及对类风湿关节炎(RA)大鼠模型的软骨细胞的作用。

方法

建立Ⅱ型胶原诱导性关节炎(CIA)大鼠模型,将24只SD大鼠随机分为对照组、RA模型组、山奈素低剂量组和山奈素高剂量组,每组6只。采用不同剂量的山奈素治疗4周后,观察各组大鼠膝关节大体标本;番红染色观察软骨情况;免疫组织化学检测软骨组织MMP-13、Aggrecan和NF-κB的表达;Western Blot检测各组大鼠软骨组织MMP-13、Aggrecan和NF-κB的表达。体外培养大鼠关节软骨细胞,使用CCK8法检测软骨细胞在不同浓度山奈素下的活力;设立对照组、IL-1β组、山奈素低剂量组和山奈素高剂量组,qRT-PCR检测软骨细胞IL-6、MMP-13的表达、Western Blot检测各组软骨细胞的IL-6、MMP-13、NF-κB的表达。

结果

与对照组相比,RA模型组大鼠的软骨可观察到明显的损伤,无论低剂量还是高剂量山奈素治疗都可改善RA动物模型的软骨损伤,其中高剂量组效果更加显著。通过番红染色观察到,山奈素处理显著减弱了RA大鼠的软骨损伤(P<0.05)。免疫组化检测结果显示,在经过山奈素处理的RA大鼠中,Aggrecan的表达得到显著上调(P<0.05),而MMP-13的表达显著下降(P<0.05),尤其在高剂量组中效果更为明显。同样,NF-κB通路中p65的磷酸化在山奈素处理组中也有显著下调(P<0.05),且在Western blot分析下也发现同样结果。CCK8检测表明,10 μm和50 μm浓度下的山奈素可显著提高IL-1β处理的大鼠软骨细胞的活性(P<0.05)。qRT-PCR检测显示,山奈素处理后,IL-6和MMP-13的mRNA表达水平在RA细胞模型中显著下降(P<0.05)。Western blot结果显示,山奈素处理后,IL-6、MMP-13和NF-κB通路中p65的磷酸化的蛋白表达水平在RA细胞模型中显著下降(P<0.05)。

结论

山奈素可通过抑制NF-κB通路,减少炎症环境下软骨细胞内IL-6和MMP-13的产生,进而减弱软骨炎症及基质降解,起到保护软骨的作用。

Objective

To explore the effects of Kaempferide on the NF-κB pathway and its role in cartilage cells of a rat model of rheumatoid arthritis (RA).

Methods

A rat model of collagen-induced arthritis (CIA) was used in this study. Twenty-four SD rats were randomly divided into four groups: control group, RA model group, low-dose Kaempferide group, and high-dose Kaempferide group, with 6 rats in each group. After treatment for four weeks, gross specimens of knee joints were observed in each group; cartilage conditions were examined by safranin staining; immunohistochemistry was used to detect the expression of MMP-13, Aggrecan, and NF-κB in cartilage tissue; and Western blot was performed to measure the expression of MMP-13, Aggrecan, and NF-κB in rat cartilage tissues. Rat joint cartilage cells were cultured in vitro, and their viability in the presence of different concentrations of Kaempferide was assessed by CCK8 assay. The cells were divided into control, IL-1β, low-dose Kaempferide, and high-dose Kaempferide groups, and qRT-PCR was used to detect the expression of IL-6 and MMP-13 in cartilage cells, and Western blot analysis was performed to measure the expression of IL-6, MMP-13, and NF-κB.

Results

Compared to the control group, significant cartilage injury was observed in the RA group, which was mitigated by Kaempferide treatment at both low and high doses, with more significant effects observed in the high-dose group. Safranin staining showed that Kaempferide treatment significantly reduced cartilage injury in RA rats (P<0.05). Immunohistochemical results indicated that, in Kaempferide-treated RA rats, the expression of Aggrecan was significantly upregulated (P<0.05), while the expression of MMP-13 was significantly downregulated (P<0.05), especially in the high-dose Kaempferide group. Similarly, the expression of phosphorylated p65 was significantly reduced in the Kaempferide treatment groups (P<0.05), a finding also observed in Western blot analysis. CCK8 assay showed that Kaempferide at concentrations of 10 μM and 50 μM significantly enhanced the viability of IL-1β-treated rat cartilage cells (P<0.05). qRT-PCR revealed that after Kaempferide treatment, the mRNA expression levels of IL-6 and MMP-13 were significantly decreased in the RA cell model (P<0.05). Western blot results showed that after Kaempferide treatment, the protein expression levels of IL-6, MMP-13, and phosphorylated p65 were significantly decreased in the RA cell model (P<0.05).

Conclusion

Kaempferide can inhibit the activation of NF-κB, and reduce the production of IL-6 and MMP-13 in cartilage cells under inflammatory conditions, thereby decreasing cartilage inflammation and matrix degradation and playing a protective role in cartilage.

图1 处理4周后大鼠关节的宏观图像(n=6)。图a展示的是对照组的宏观图像;图b为展示的是RA组的宏观图像;图c为展示的是山奈素低剂量组的宏观图像;图d为展示的是山奈素高剂量组的宏观图像
图2 处理4周后,大鼠膝关节的番红染色组织学图像(n=6)。图a为番红染色光镜图(×100);图b为Mankin评分(与RA组比较,*P<0.05,**P<0.01;与对照组比较,##P<0.01)
图3 免疫组织化学染色检测RA大鼠膝关节软骨组织MMP-13和Aggrecan的表达(n=6)。图a为免疫组化染色光镜图(×400);图b为MMP-13免疫组化染色结果的光密度分析;图c为Aggrecan免疫组化染色结果的光密度分析(与RA组比较,**P<0.01,***P<0.001;与对照组比较,#P<0.05)
图4 免疫组织化学染色检测RA大鼠膝关节软骨组织NF-κB通路中p-p65磷酸化的表达(n=6)。图a为免疫组化染色光镜图(×400);图b为p-p65免疫组化染色结果的光密度分析(与RA组比较,**P<0.01;与对照组比较,#P<0.05)
图5 WB检测RA大鼠膝关节软骨组织的MMP-13、Aggrecan、p-p65和p65的表达(n=3)。图a为MMP-13、Aggrecan、p-p65和p65的WB结果;图b为MMP-13的WB结果的灰度值分析;图c为Aggrecan的WB结果的灰度值分析;图d为p-p65和p65的WB结果的灰度值分析(与RA组比较,*P<0.05,**P<0.01;与对照组比较,#P<0.05)
图6 CCK8检测山奈素对大鼠软骨细胞的影响(n=3)。图a为CCK8检测不同浓度KA(0,1,10,50,100,200 μm)对于大鼠软骨细胞活性的影响(对照组比较,ns无统计学差异,****P<0.0001);图b为CCK8检测不同浓度KA(0,10,50 μm)对于RA细胞模型活性的影响(与RA组比较,****P<0.0001;与对照组比较,#P<0.05)
图7 qRT-PCR检测大鼠软骨细胞的IL-6、MMP-13的表达。图a为IL-6的qRT-PCR检测结果;图b为MMP-13的qRT-PCR检测结果(与RA组比较,**P<0.01,**P<0.001,****P<0.0001;与对照组比较,#P<0.05)
图8 WB检测检测大鼠软骨细胞的IL-6、MMP-13、p-p65和p65的表达(n=3)。图a为IL-6、MMP-13、p-p65和p65的WB结果;图b为图a的灰度值分析(与RA组比较,*P<0.05,**P<0.001;与对照组比较,#P<0.05)
1
McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis [J]. Nat Rev Immunol, 2007,7(6): 429-442.
2
Firestein GS. Evolving concepts of rheumatoid arthritis [J]. Nature, 2003,423(6937): 356-361.
3
高君伟, 刘皋林. 自身免疫性疾病的药物治疗 [J/OL]. 中华临床医师杂志(电子版), 2023,17(12): 1209-1211.
4
Nakajima S, Kitamura M. Bidirectional regulation of NF-kappaB by reactive oxygen species: a role of unfolded protein response [J]. Free Radic Biol Med, 2013,65: 162-174.
5
Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity [J]. Nat Rev Immunol, 2011,11(11): 750-761.
6
Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems [J]. Physiol Rev, 2017,97(4): 1295-349.
7
Mitchell JP, Carmody RJ. NF-kappaB and the transcriptional control of inflammation [J]. Int Rev Cell Mol Biol, 2018,335: 41-84.
8
Li L, Liu H, Shi W, et al. Insights into the action mechanisms of traditional Chinese medicine in osteoarthritis [J]. Evid Based Complement Alternat Med, 2017,2017: 5190986.
9
Yue ME, Jiang TF, Shi YP. Fast determination of flavonoids in Hippophae rhamnoides and its medicinal preparation by capillary zone electrophoresis using dimethyl-beta-cyclodextrin as modifier [J]. Talanta, 2004,62(4): 695-699.
10
Zhang Q, Cui H. Simultaneous determination of quercetin, kaempferol, and isorhamnetin in phytopharmaceuticals of Hippophae rhamnoides L. by high-performance liquid chromatography with chemiluminescence detection [J]. J Sep Sci, 2005,28(11): 1171-1178.
11
Pundir S, Garg P, Dviwedi A, et al. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review [J]. J Ethnopharmacol, 2021,266: 113434.
12
Jiao Z, Xu W, Zheng J, et al. Kaempferide prevents titanium particle induced osteolysis by suppressing JNK activation during osteoclast formation [J]. Sci Rep, 2017,7(1): 16665.
13
Wang D, Zhang X, Li D, et al. Kaempferide protects against myocardial ischemia/reperfusion injury through activation of the PI3K/Akt/GSK-3beta pathway [J]. Mediators Inflamm, 2017,2017: 5278218.
14
Kawasaki K, Fushimi T, Nakamura J, et al. Guava leaf extract suppresses osteoarthritis progression in a rat anterior cruciate ligament transection model [J]. Food Sci Nutr, 2018,6(4): 800-805.
15
Ostrowska M, Maslinski W, Prochorec-Sobieszek M, et al. Cartilage and bone damage in rheumatoid arthritis. Reumatologia. 2018;56(2):111-20.
16
王瑞, 孙魏巍, 艾娇, 等. 临床前期类风湿关节炎的特点及治疗策略 [J/OL]. 中华临床医师杂志(电子版), 2018,12(8): 472-476.
17
Choi JK, Kwon OY, Lee SH. Kaempferide prevents photoaging of ultraviolet-B irradiated NIH-3T3 cells and mouse skin via regulating the reactive oxygen species-mediated signalings [J]. Antioxidants (Basel), 2022,12(1).
18
Dajas F, Rivera-Megret F, Blasina F, et al. Neuroprotection by flavonoids [J]. Braz J Med Biol Res, 2003,36(12): 1613-1620.
19
Lee CJ, Moon SJ, Jeong JH, et al. Kaempferol targeting on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis prevents the development of rheumatoid arthritis [J]. Cell Death Dis, 2018,9(3): 401.
20
Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: An updated review [J]. Life Sci, 2019,234: 116786.
21
Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis [J]. Cytokine Growth Factor Rev, 2018,44: 38-50.
22
Fei J, Liang B, Jiang C, et al. Luteolin inhibits IL-1beta-induced in fl ammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model [J]. Biomed Pharmacother, 2019,109: 1586-1592.
23
Li Z, Liu B, Zhao D, et al. Protective effects of nebivolol against interleukin-1beta (IL-1beta)-induced type II collagen destruction mediated by matrix metalloproteinase-13 (MMP-13) [J]. Cell Stress Chaper/ones, 2017,22(6): 767-774.
[1] 王铭, 杨萌, 赵瑞娜, 王若蛟, 陶葸茜, 齐振红, 张一休, 苏娜, 张睿, 刘思锐, 李建初, 姜玉新. 基于EULAR-OMERACT评分系统的类风湿关节炎超声评估效果研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1248-1253.
[2] 李朋, 苗立帅, 朱智奇. 四氢嘧啶对大鼠关节软骨细胞的保护作用[J]. 中华关节外科杂志(电子版), 2024, 18(01): 69-77.
[3] 李鸿昌, 孙艳宏, 高旺, 张金才, 牛亚清, 张国梁. 滑膜软骨瘤病的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 679-683.
[4] 余泽俊, 苏松川, 付燕, 黄文凭. 自体膝关节骨软骨移植治疗距骨骨软骨损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(04): 592-596.
[5] 罗璠, 饶志涛. 机械敏感蛋白Piezo1介导创伤后骨关节炎的作用及机制[J]. 中华关节外科杂志(电子版), 2023, 17(04): 528-533.
[6] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[7] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[8] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[9] 朱意然, 覃健. 拉曼光谱技术用于监测膝关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(02): 276-282.
[10] 郝耀, 陈丽, 韩永斌, 高宏, 韩树峰. miRNA在骨骼生长发育和骨性关节炎中的作用[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 73-77.
[11] 朱苗娟, 杜聃, 廖慧斌, 陈毅斐, 杨炯. 以呼吸道症状为首发表现的复发性多软骨炎一例[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 335-337.
[12] 蒋鹏飞, 程尼涛. 侵犯左肺及心包的巨大胸壁软骨肉瘤一例[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 296-298.
[13] 李尚哲, 杨珖, 陈仁杰, 张海龙, 鲁谊. 肱骨远端关节软骨的三维分布及双侧配准研究[J]. 中华肩肘外科电子杂志, 2023, 11(04): 330-337.
[14] 苗壮, 刘培来. 富血小板血浆治疗膝骨关节炎的现状与展望[J]. 中华临床医师杂志(电子版), 2023, 17(01): 1-6.
[15] 易和强, 邓志刚. 13例化脓性肋软骨炎的诊治体会[J]. 中华胸部外科电子杂志, 2023, 10(03): 176-179.
阅读次数
全文


摘要